【題目】某商家計劃投入10萬元經(jīng)銷甲,乙兩種商品,根據(jù)市場調(diào)查統(tǒng)計,當(dāng)投資額為萬元,經(jīng)銷甲,乙兩種商品所獲得的收益分別為
萬元與
萬元,其中
,
,當(dāng)該商家把10萬元全部投入經(jīng)銷乙商品時,所獲收益為5萬元.
(1)求實數(shù)a的值;
(2)若該商家把10萬元投入經(jīng)銷甲,乙兩種商品,請你幫他制訂一個資金投入方案,使他能獲得最大總收益,并求出最大總收益.
【答案】(1);(2)投入甲商品的資金為
萬元,投入乙商品的資金為
萬元,此時收益最大為
萬元.
【解析】
(1)將代入
,即可求出
的值;
(2)根據(jù)分段函數(shù)求出在
和
內(nèi)的收益函數(shù),分別利用基本不等式和二次函數(shù)求出兩段的最值,然后比較大小即可得出結(jié)果.
(1)依題意可得,解得
.
(2)設(shè)投入商品的資金為
萬元
,則投入
商品的資金為
萬元,
設(shè)收入為萬元,則
①當(dāng)時,
,
,
則
,當(dāng)且僅當(dāng)
,即
時,取等號.
②當(dāng)時,則
,
因為,所以此時
,
因為,所以最大收益為
萬元,
答:投入甲商品的資金為8萬元,投入乙商品的資金為2萬元,此時收益最大,為17萬元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線關(guān)于
軸對稱,且經(jīng)過點
.
(1)求拋物線的標(biāo)準(zhǔn)方程及其準(zhǔn)線方程;
(2)設(shè)為原點,過拋物線
的焦點
作斜率不為0的直線
交拋物線
于兩點
、
,拋物線的準(zhǔn)線分別交直線
、
于點
和點
,求證:以
為直徑的圓經(jīng)過
軸上的兩個定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某二手交易市場對某型號的二手汽車的使用年數(shù)x(0<x≤10)與銷售價格y(單位:萬元/輛)進行整理,得到如下的對應(yīng)數(shù)據(jù):
使用年數(shù)x | 2 | 4 | 6 | 8 | 10 |
銷售價格y | 16 | 13 | 9.5 | 7 | 4.5 |
(1)試求y關(guān)于x的回歸直線方程.
(參考公式:,
)
(2)已知每輛該型號汽車的收購價格為ω=0.05x2﹣1.75x+17.2萬元,根據(jù)(1)中所求的回歸方程,預(yù)測x為何值時,銷售一輛該型號汽車所獲得的利潤z最大?(利潤=銷售價格﹣收購價格)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年以來精準(zhǔn)扶貧政策的落實,使我國扶貧工作有了新進展,貧困發(fā)生率由
年底的
下降到
年底的
,創(chuàng)造了人類減貧史上的的中國奇跡.“貧困發(fā)生率”是指低于貧困線的人口占全體人口的比例,
年至
年我國貧困發(fā)生率的數(shù)據(jù)如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
貧困發(fā)生率 | 10.2 | 8.5 | 7.2 | 5.7 | 4.5 | 3.1 | 1.4 |
(1)從表中所給的個貧困發(fā)生率數(shù)據(jù)中任選兩個,求兩個都低于
的概率;
(2)設(shè)年份代碼,利用線性回歸方程,分析
span>年至
年貧困發(fā)生率
與年份代碼
的相關(guān)情況,并預(yù)測
年貧困發(fā)生率.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:
(
的值保留到小數(shù)點后三位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為
為參數(shù)),以坐標(biāo)原點為極點,
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求直線的普通方程和曲線
的直角坐標(biāo)方程;
(2)設(shè)點,直線
與曲線
交于
兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的一個焦點與拋物線
:
的焦點重合,且橢圓的離心率為
.
(1)求的方程;
(2)過點的動直線
與橢圓
相交于
兩點,
為原點,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為緩減人口老年化帶來的問題,中國政府在2016年1月1日作出全國統(tǒng)一實施全面的“二孩”政策,生“二孩”是目前中國比較流行的元素某調(diào)查機構(gòu)對某校學(xué)生做了一個是否同意父母生“二孩”抽樣調(diào)查,該調(diào)查機構(gòu)從該校隨機抽查了100名不同性別的學(xué)生,調(diào)查統(tǒng)計他們是同意父母生“二孩”還是反對父母生“二孩”
現(xiàn)已得知100人中同意父母生“二孩”占
,統(tǒng)計情況如表:
性別屬性 | 同意父母生“二孩” | 反對父母生“二孩” | 合計 |
男生 | 10 | ||
女生 | 30 | ||
合計 | 100 |
請補充完整上述列聯(lián)表;
根據(jù)以上資料你是否有
把握,認為是否同意父母生“二孩”與性別有關(guān)?請說明理由.
參考公式與數(shù)據(jù):,其中
k |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)正四面體ABCD的所有棱長都為1米,有一只螞蟻從點A開始按以下規(guī)則前進:在每一個頂點處等可能地選擇通過這個頂點的三條棱之一,并且沿著這條棱爬到盡頭,則它爬了4米之后恰好位于頂點A的概率為( )
A.B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com