日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知是橢圓上兩點,點的坐標為.
          (1)當關于點對稱時,求證:
          (2)當直線經(jīng)過點時,求證:不可能為等邊三角形.
          (1)詳見解析,(2)詳見解析.

          試題分析:(1)利用“點代法”求點的坐標關系,在求解過程中證明結論.因為關于點對稱,所以,代入橢圓方程得,兩式相減得,所以(2)本題實質為“弦中點”問題,設中點為,由“點差法”得又假設為等邊三角形時,有所以這與弦中點在橢圓內部矛盾,所以假設不成立.
          試題解析:(1)證明:
          因為在橢圓上,
          所以                 1分
          因為關于點對稱,
          所以,                2分
          代入②得③,
          由①和③消解得,                     4分
          所以.                     5分
          (2)當直線斜率不存在時,,
          可得,不是等邊三角形.           6分
          當直線斜率存在時,顯然斜率不為0.
          設直線,中點為
          聯(lián)立消去,         7分

          ,得到①                 8分
          ,
          所以
          所以                     10分
          假設為等邊三角形,則有,
          又因為
          所以,即,          11分
          化簡,解得       12分
          這與①式矛盾,所以假設不成立.
          因此對于任意不能使得,故不能為等邊三角形.      14分
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源:不詳 題型:解答題

          (理)已知點是平面直角坐標系上的一個動點,點到直線的距離等于點到點的距離的2倍.記動點的軌跡為曲線.
          (1)求曲線的方程;
          (2)斜率為的直線與曲線交于兩個不同點,若直線不過點,設直線的斜率分別為,求的數(shù)值;
          (3)試問:是否存在一個定圓,與以動點為圓心,以為半徑的圓相內切?若存在,求出這個定圓的方程;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知橢圓的方程為,其中.
          (1)求橢圓形狀最圓時的方程;
          (2)若橢圓最圓時任意兩條互相垂直的切線相交于點,證明:點在一個定圓上.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知橢圓C的中心在原點,一個焦點F(-2,0),且長軸長與短軸長的比為,
          (1)求橢圓C的方程;
          (2)設點M(m,0)在橢圓C的長軸上,設點P是橢圓上的任意一點,若當最小時,點P恰好落在橢圓的右頂點,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知橢圓C:()的短軸長為2,離心率為
          (1)求橢圓C的方程
          (2)若過點M(2,0)的引斜率為的直線與橢圓C相交于兩點G、H,設P為橢圓C上一點,且滿足為坐標原點),當時,求實數(shù)的取值范圍?

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知橢圓的焦距為2,且過點.
          (1)求橢圓C的方程;
          (2)設橢圓C的左右焦點分別為,,過點的直線與橢圓C交于兩點.
          ①當直線的傾斜角為時,求的長;
          ②求的內切圓的面積的最大值,并求出當的內切圓的面積取最大值時直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          若橢圓的焦點分別為,弦過點,則的周長為
          A.B.C.8D.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          設F1,F(xiàn)2是橢圓=1的左、右兩個焦點,若橢圓上滿足PF1⊥PF2的點P有且只有兩個,則離心率e的值為(   )
          A.B.C.D..

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:填空題

          設橢圓的兩個焦點分別為,點在橢圓上,且,,則該橢圓的離心率為          

          查看答案和解析>>

          同步練習冊答案