日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如果在一條平面曲線上存在四點,使得這四點構(gòu)成的圖形是一個菱形,則稱該曲線存在內(nèi)接菱形現(xiàn)已知雙曲線,雙曲線,其中,,證明在雙曲線中有且僅有一條存在內(nèi)接菱形

          【答案】見解析

          【解析】

          先證如下兩個引理.

          引理1 若雙曲線存在內(nèi)接菱形,則該菱形的中心必是原點.

          不妨設(shè)雙曲線上存在內(nèi)接菱形,其坐標分別為、、,對角線的交點為

          若直線(或)平行軸,則(或)必為軸.易知此時、、、四點不滿足題意.故直線的斜率均存在,設(shè)為、

          ,

          兩式相減,得,即

          由上式知,若、中有一個為零時,則兩個均為零.

          、均不為零,則可得

          同理,可得

          上面兩式相乘,得

          這是不可能的.故總有、成立.

          引理2 雙曲線存在內(nèi)接菱形的充要條件是

          如圖,,分別是雙曲線的兩條漸近線.

          若四邊形是其內(nèi)接菱形,

          則必有、,且,即

          故必有,即

          反之,當時,易知在該雙曲線上必存在一個中心為原點的內(nèi)接菱形.引理2得證.

          下面利用上述兩個引理來證明原題.

          由于為一對共軛雙曲線,且,故當時,知上存在內(nèi)接菱形,而上不存在;

          時,知上存在內(nèi)接菱形,而上不存在.

          故雙曲線上有且僅有一條上存在內(nèi)接菱形.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè)數(shù)列滿足,,則______.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知四邊形為等腰梯形,,沿對角線旋轉(zhuǎn),使得點至點的位置,此時滿足.

          (1)證明

          (2)求二面角平面角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】共享單車的投放,方便了市民短途出行,被譽為中國新四大發(fā)明之一.某市為研究單車用戶與年齡的相關(guān)程度,隨機調(diào)查了100位成人市民,統(tǒng)計數(shù)據(jù)如下:

          不小于40

          小于40

          合計

          單車用戶

          12

          y

          m

          非單車用戶

          x

          32

          70

          合計

          n

          50

          100

          1)求出列聯(lián)表中字母xy、m、n的值;

          2)①從此樣本中,對單車用戶按年齡采取分層抽樣的方法抽出5人進行深入調(diào)研,其中不小于40歲的人應(yīng)抽多少人?

          ②從獨立性檢驗角度分析,能否有以上的把握認為該市成人市民是否為單車用戶與年齡是否小于40歲有關(guān).

          下面臨界值表供參考:

          P

          0.15

          0.10

          0.05

          0.25

          0.010

          0.005

          0.001

          k

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】空間中個平面,其中任意三個平面無公垂面.那么,下述四個結(jié)論

          1沒有任何兩個平面互相平行;

          2沒有任何三個平面相交于一條直線;

          3平面間的任意兩條交線都不平行;

          4平面間的每一條交線均與個平面相交.

          其中,正確的各數(shù)為( ).

          A. 1 B. 2 C. 3 D. 4

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知的展開式中的第二項和第三項的系數(shù)相等.

          (1)求的值;

          (2)求展開式中所有二項式系數(shù)的和;

          (3)求展開式中所有的有理項.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖所示將同心圓環(huán)均勻分成n().在內(nèi)環(huán)中固定數(shù)字1~n.問能否將數(shù)字1~n填入外環(huán)格內(nèi),使得外環(huán)旋轉(zhuǎn)任意格后有且僅有一個格中內(nèi)外環(huán)的數(shù)字相同

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】一個有限整數(shù)數(shù)列稱為一個好數(shù)列,是指對每個均使得等式成立.證明:對任何兩個整數(shù),都存在一個自然數(shù)和一個好數(shù)列,滿足.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】甲乙兩人進行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局數(shù)多者贏得比賽,假設(shè)每局甲獲勝的概率為,乙獲勝的概率為,各局比賽結(jié)果相互獨立.

          求甲在4局以內(nèi)(含4局)贏得比賽的概率;

          為比賽決出勝負時的總局數(shù),求的分布列和均值(數(shù)學期望).

          查看答案和解析>>

          同步練習冊答案