設(shè)函數(shù)
(Ⅰ)證明對每一個,存在唯一的
,滿足
;
(Ⅱ)由(Ⅰ)中的構(gòu)成數(shù)列
,判斷數(shù)列
的單調(diào)性并證明;
(Ⅲ)對任意,
滿足(Ⅰ),試比較
與
的大小.
(Ⅰ)詳見解析;(Ⅱ)數(shù)列單調(diào)遞減,證明詳見解析;(Ⅲ)
.
解析試題分析:(Ⅰ)證明對每一個,存在唯一的
,滿足
,只需證明兩點,第一證
在
上為單調(diào)函數(shù),第二證,
在區(qū)間
的端點的函數(shù)值異號,本題是高次函數(shù),可用導(dǎo)數(shù)法判斷單調(diào)性,而判斷
的符號是,可用放縮法;(Ⅱ)由(Ⅰ)中的
構(gòu)成數(shù)列
,判斷數(shù)列
的單調(diào)性,由(Ⅰ)知
在
上遞增,只需比較
的大小,由(Ⅰ)知
,故
,而
,從而得到
,而
,所以
,這樣就可判斷數(shù)列
的單調(diào)性;(Ⅲ)對任意
,
滿足(Ⅰ),試比較
與
的大小,由(Ⅱ)知數(shù)列
單調(diào)遞減,故
,即比較
與
的大小,由(Ⅰ)知
,寫出
與
的式子,兩式作差即可.本題函數(shù)與數(shù)列結(jié)合出題,體現(xiàn)學(xué)科知識交匯點的靈活運用,的確是一個好題,起到把關(guān)題的作用.
試題解析:(Ⅰ) ,顯然,當(dāng)
時,
,故
在
上遞增,又
,
,故存在唯一的
,滿足
;
(Ⅱ)因為,所以
,
,由(Ⅰ)知
在
上遞增,故
,即數(shù)列
單調(diào)遞減;
(Ⅲ) 由(Ⅱ)數(shù)列單調(diào)遞減,故
,而
,
,兩式相減:并結(jié)合
,以及
,
,所以有
.
考點:函數(shù)與導(dǎo)數(shù),導(dǎo)數(shù)與函數(shù)的單調(diào)性、根的存在性定理,數(shù)列的單調(diào)性,不等式中的放縮法的運用,學(xué)生的基本推理能力,及基本運算能力以及轉(zhuǎn)化與化歸的能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知公差不為0的等差數(shù)列的前3項和
=9,且
成等比數(shù)列
(1)求數(shù)列的通項公式和前n項和
;
(2)設(shè)為數(shù)列
的前n項和,若
對一切
恒成立,求實數(shù)
的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知公差不為零的等差數(shù)列的前
項和
,且
成等比數(shù)列.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若數(shù)列滿足
,求
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
三個不同的數(shù)成等差數(shù)列,其和為6,如果將此三個數(shù)重新排列,他們又可以成等比數(shù)列,求這個等差數(shù)列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若數(shù)列的前
項和為
,對任意正整數(shù)
都有
,記
.
(1)求,
的值;
(2)求數(shù)列的通項公式;
(3)若求證:對任意
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,
,前
和
(Ⅰ)求證:數(shù)列是等差數(shù)列; (Ⅱ)求數(shù)列
的通項公式;
(Ⅲ)設(shè)數(shù)列的前
項和為
,是否存在實數(shù)
,使得
對一切正整數(shù)
都成立?若存在,求
的最小值,若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列滿足:
點
均在直線
上.
(I)證明數(shù)列為等比數(shù)列,并求出數(shù)列
的通項公式;
(II)若,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列,
,
,記
,
,
(
),若對于任意
,
,
,
成等差數(shù)列.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ) 求數(shù)列的前
項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com