日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知正項(xiàng)數(shù)列{an}中,a1=1,an+1=1+
          an1+an
          (n∈N*)
          .用數(shù)學(xué)歸納法證明:anan+1(n∈N*)
          分析:直接利用數(shù)學(xué)歸納法的證明步驟,通過(guò)n=1驗(yàn)證不等式成立;假設(shè)n=k時(shí)不等式成立,證明n=k+1時(shí)不等式也成立即可.
          解答:證明:當(dāng)n=1時(shí),a2=1+
          a1
          1+a1
          =
          3
          2
          ,a1<a2,所以n=1時(shí),不等式成立.
          假設(shè)n=k(k∈N*)時(shí),ak<ak+1成立,則n=k+1時(shí),
          ak+2-ak+1= 1+
          ak+1
          1+ak+1
          -ak+1

          =1+
          ak+1
          1+ak+1
          -
          (1+
          ak
          1+ak
          )

          =
          ak
          1+ak
          -
          ak+1
          1+ak+1

          =
          ak+1-ak
          (1+ak+1)(1+ak)
          >0;
          即ak+2-ak+1>0,
          所以n=k+1時(shí),不等式也成立.
          綜上所述,不等式anan+1(n∈N*)成立.
          點(diǎn)評(píng):本題考查數(shù)列與不等式的證明,考查數(shù)學(xué)歸納法證明步驟的應(yīng)用,注意證明n=k+1時(shí)必須用上假設(shè),考查邏輯推理能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知正項(xiàng)數(shù)列{an}滿足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*
          (1)求證:數(shù)列{
          an
          2n+1
          }
          為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)an
          (2)設(shè)bn=
          1
          an
          ,求數(shù)列{bn}的前n項(xiàng)和為Sn,并求Sn的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          定義:稱(chēng)
          n
          a1+a2+…+an
          為n個(gè)正數(shù)a1,a2,…,an的“均倒數(shù)”,已知正項(xiàng)數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為
          1
          2n
          ,則
          lim
          n→∞
          nan
          sn
          ( 。
          A、0
          B、1
          C、2
          D、
          1
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知正項(xiàng)數(shù)列an中,a1=2,點(diǎn)(
          an
          ,an+1)
          在函數(shù)y=x2+1的圖象上,數(shù)列bn中,點(diǎn)(bn,Tn)在直線y=-
          1
          2
          x+3
          上,其中Tn是數(shù)列bn的前項(xiàng)和.(n∈N+).
          (1)求數(shù)列an的通項(xiàng)公式;
          (2)求數(shù)列bn的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知正項(xiàng)數(shù)列{an}滿足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
          (1)求證:數(shù)列{bn}為等比數(shù)列;
          (2)記Tn為數(shù)列{
          1
          log2bn+1log2bn+2
          }
          的前n項(xiàng)和,是否存在實(shí)數(shù)a,使得不等式Tn<log0.5(a2-
          1
          2
          a)
          對(duì)?n∈N+恒成立?若存在,求出實(shí)數(shù)a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知正項(xiàng)數(shù)列{an},Sn=
          1
          8
          (an+2)2

          (1)求證:{an}是等差數(shù)列;
          (2)若bn=
          1
          2
          an-30
          ,求數(shù)列{bn}的前n項(xiàng)和.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案