【題目】在底面為正方形的四棱錐中,平面
平面
分別為棱
和
的中點.
(1)求證:平面
;
(2)若直線與
所成角的正切值為
,求平面
與平面
所成銳二面角的大小.
【答案】(1)見解析(2)
【解析】
(1)要證明線面平行,需先證明面面平行,取的中點
,連接
,證明平面
平面
;
(2)分別取和
的中點
,連
,由條件可證明
三條線兩兩垂直,以
為原點建立空間直角坐標(biāo)系,分別求兩個平面的法向量
,利用公式
求值.
(1)證明:取的中點
,連接
,
因為分別為
和
的中點,四邊形
為正方形,
所以,
因為平面
平面
,
所以平面平面
,
因為平面
,
所以平面
.
(2)因為平面平面
,平面
平面
平面
所以平面
,
所以,
因為,
所以就是直線
與
所成的角,
所以,
設(shè),
分別取和
的中點
,連
,
因為,
所以,
因為平面平面
,平面
平面
平面
,
所以平面
如圖,建立空間直角坐標(biāo)系,
則,
所以,
設(shè)是平面
的一個法向量,則
取,則
,所以
是平面
的一個法向量,
所以,
所以所求二面角的大小為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,過橢圓:
的左右焦點
分別作直線
,
交橢圓于
與
,且
.
(1)求證:當(dāng)直線的斜率
與直線
的斜率
都存在時,
為定值;
(2)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是奇函數(shù)
的導(dǎo)函數(shù),
,當(dāng)
時,
,則使得
成立的
的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了鼓勵職員工作熱情,某公司對每位職員一年來的工作業(yè)績按月進(jìn)行考評打分;年終按照職員的月平均值評選公司最佳職員并給予相應(yīng)獎勵.已知職員一年來的工作業(yè)績分?jǐn)?shù)的莖葉圖如圖所示:
(1)根據(jù)職員的業(yè)績莖葉圖求出他這一年的工作業(yè)績的中位數(shù)和平均數(shù);
(2)若記職員的工作業(yè)績的月平均數(shù)為
.
①已知該公司還有6位職員的業(yè)績在100以上,分別是,
,
,
,
,
,在這6人的業(yè)績里隨機(jī)抽取2個數(shù)據(jù),求恰有1個數(shù)據(jù)滿足
(其中
)的概率;
②由于職員的業(yè)績高,被公司評為年度最佳職員,在公司年會上通過抽獎形式領(lǐng)取獎金.公司準(zhǔn)備了9張卡片,其中有1張卡片上標(biāo)注獎金為6千元,4張卡片的獎金為4千元,另外4張的獎金為2千元.規(guī)則是:獲獎職員需要從9張卡片中隨機(jī)抽出3張,這3張卡片上的金額數(shù)之和就是該職員所得獎金.記職員
獲得的獎金為
(千元),求
的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A,B兩點的坐標(biāo)分別為(﹣1,0),(1,0).條件甲:A、B、C三點構(gòu)成以∠C為鈍角的三角形;條件乙:點C的坐標(biāo)是方程x2+2y2=1(y≠0)的解,則甲是乙的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】斜三棱柱ABC﹣A1B1C1,已知側(cè)面BB1C1C與底面ABC垂直且∠BCA=90°,∠B1BC=60°,BC=BB1=2,若二面角A﹣B1B﹣C為30°
(1)求AB1與平面BB1C1C所成角的正切值;
(2)在平面AA1B1B內(nèi)找一點P,使三棱錐P﹣BB1C為正三棱錐,并求P到平面BB1C距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓
的普通方程為
.在以坐標(biāo)原點為極點,
軸正半軸為極軸的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(1)寫出圓的參數(shù)方程和直線
的直角坐標(biāo)方程;
(2)設(shè)點在
上,點Q在
上,求
的最小值及此時點
的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已過拋物線:
的焦點
作直線
交拋物線
于
,
兩點,以
,
兩點為切點作拋物線的切線,兩條直線交于
點.
(1)當(dāng)直線平行于
軸時,求點
的坐標(biāo);
(2)當(dāng)時,求直線
的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com