日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在三棱柱中,的重心,.

          1求證:平面;

          2若側(cè)面底面,,求直線與平面所成角的正弦值.

          【答案】1見(jiàn)解析;2.

          【解析】

          試題分析:1 連接,并延長(zhǎng),交于點(diǎn),過(guò),交于點(diǎn),分別連接,只要證明所以平面平面,由面面平行的性質(zhì)可證平面;2由題意先證明側(cè)面底面,由面面垂直的性質(zhì)可證平面,所以可以為原點(diǎn),分別以軸,軸,軸建立空間直角坐標(biāo)系,求出平面的法向量以及直線的方向向量,由空間向量夾角公式求之即可.

          試題解析: 1證明:連接,并延長(zhǎng),交于點(diǎn),過(guò),交于點(diǎn),分別連接.

          因?yàn)?/span>的重心,所以.………………1分

          ,所以.

          又據(jù)三棱柱性質(zhì)知,

          所以.………………2分

          又因?yàn)?/span>平面平面,

          所以平面.

          又因?yàn)?/span>,平面,

          所以平面平面.………………3分

          又因?yàn)?/span>平面,

          所以平面.………………4分

          2連接.

          因?yàn)?/span>,,,

          所以,

          所以,所以.

          因?yàn)閭?cè)面底面,側(cè)面底面平面,

          所以平面.

          因?yàn)?/span>,,所以是等邊三角形,

          所以.………………6分

          為原點(diǎn),分別以軸,軸,軸建立空間直角坐標(biāo)系,

          ,,,

          所以,,,

          所以.………………8分

          設(shè)平面的一個(gè)法向量為,則

          所以

          ,………………10分

          所以.

          所以.即直線與平面所成角的正弦值為.……………12分

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列,,其前項(xiàng)和滿足,其中

          (1)設(shè),證明數(shù)列是等差數(shù)列;

          (2)設(shè),為數(shù)列的前項(xiàng)和求證;

          (3)設(shè)為非零整數(shù)),試確定的值,使得對(duì)任意,都有成立

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】開(kāi)門大吉是某電視臺(tái)推出的游戲益智節(jié)目.選手面對(duì)號(hào)扇大門,依次按響門上的門鈴,門鈴會(huì)播放一段音樂(lè)(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對(duì)應(yīng)的家庭夢(mèng)想基金.正確回答每一扇門后,選手可自由選擇帶著獎(jiǎng)金離開(kāi)比賽,還可繼續(xù)挑戰(zhàn)后面的門以獲得更多獎(jiǎng)金.(獎(jiǎng)金金額累加)但是一旦回答錯(cuò)誤,獎(jiǎng)金將清零,選手也會(huì)離開(kāi)比賽.在一次場(chǎng)外調(diào)查中,發(fā)現(xiàn)參加比賽的選手多數(shù)分為兩個(gè)年齡段:;(單位:歲),其猜對(duì)歌曲名稱與否人數(shù)如圖所示.

          (1)寫出列聯(lián)表:判斷是否有的把握認(rèn)為猜對(duì)歌曲名稱與否與年齡有關(guān)?

          說(shuō)明你的理由.(下面的臨界值表供參考)

          (2)若某選手能正確回答第一、二、三、四扇門的概率分別為,,,正確回答一個(gè)問(wèn)題后,選擇繼續(xù)回答下一個(gè)問(wèn)題的概率是,且各個(gè)問(wèn)題回答正確與否互不影響.設(shè)該選手所獲夢(mèng)想基金總數(shù)為,求的分布列及數(shù)學(xué)期望.

          (參考公式其中

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓 )的兩個(gè)焦點(diǎn)為, ,離心率為,點(diǎn) 在橢圓上, 在線段上,且的周長(zhǎng)等于

          (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

          (Ⅱ)過(guò)圓 上任意一點(diǎn)作橢圓的兩條切線與圓交于點(diǎn) ,求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          1若曲線在點(diǎn)處與直線相切,求的值;

          2若函數(shù)有兩個(gè)零點(diǎn),試判斷的符號(hào),并證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】我國(guó)古代數(shù)學(xué)名著《續(xù)古摘奇算法》(楊輝)一書中有關(guān)于三階幻方的問(wèn)題:將1,2,3,4,5,6,7,8,9分別填入的方格中,使得每一行,每一列及對(duì)角線上的三個(gè)數(shù)的和都相等,我們規(guī)定:只要兩個(gè)幻方的對(duì)應(yīng)位置(如每行第一列的方格)中的數(shù)字不全相同,就稱為不同的幻方,那么所有不同的三階幻方的個(gè)數(shù)是( )

          8

          3

          4

          1

          5

          9

          6

          7

          2

          A. 9 B. 8 C. 6 D. 4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線 是焦點(diǎn),直線是經(jīng)過(guò)點(diǎn)的任意直線.

          (Ⅰ)若直線與拋物線交于兩點(diǎn),且是坐標(biāo)原點(diǎn), 是垂足),求動(dòng)點(diǎn)的軌跡方程;

          (Ⅱ)若、兩點(diǎn)在拋物線上,且滿足,求證:直線必過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(本小題滿分為14分)已知定義域?yàn)?/span>R的函數(shù)是奇函數(shù).

          1)求a,b的值;

          2)若對(duì)任意的t∈R,不等式ft22t)+f2t2k<0恒成立,求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)為實(shí)數(shù)).

          (1)當(dāng)時(shí),求函數(shù)的圖象在點(diǎn)處的切線方程;

          (2)設(shè)函數(shù)(其中為常數(shù)),若函數(shù)在區(qū)間上不存在極值,且存在滿

          ,求的取值范圍;

          (3)已知,求證:

          查看答案和解析>>

          同步練習(xí)冊(cè)答案