【題目】(本小題滿分14分)
已知拋物線的焦點(diǎn)為
,
為
上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)
的直線
交
于另一點(diǎn)
,交
軸的正半軸于點(diǎn)
,且有
.當(dāng)點(diǎn)
的橫坐標(biāo)為
時(shí),
為正三角形.
(Ⅰ)求的方程;
(Ⅱ)若直線,且
和
有且只有一個(gè)公共點(diǎn)
,
(ⅰ)證明直線過定點(diǎn),并求出定點(diǎn)坐標(biāo);
(ⅱ)的面積是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說明理由.
【答案】(I).(II)(ⅰ)直線AE過定點(diǎn)
.(ⅱ)
的面積的最小值為16.
【解析】試題分析:(I)由拋物線的定義知,
解得或
(舍去).得
.拋物線C的方程為
.
(II)(ⅰ)由(I)知,
設(shè),
可得,即
,直線AB的斜率為
,
根據(jù)直線和直線AB平行,可設(shè)直線
的方程為
,
代入拋物線方程得,
整理可得,
直線AE恒過點(diǎn).
注意當(dāng)時(shí),直線AE的方程為
,過點(diǎn)
,
得到結(jié)論:直線AE過定點(diǎn).
(ⅱ)由(ⅰ)知,直線AE過焦點(diǎn),
得到,
設(shè)直線AE的方程為,
根據(jù)點(diǎn)在直線AE上,
得到,再設(shè)
,直線AB的方程為
,
可得,
代入拋物線方程得,
可求得,
,
應(yīng)用點(diǎn)B到直線AE的距離為
.
從而得到三角形面積表達(dá)式,應(yīng)用基本不等式得到其最小值.
試題解析:(I)由題意知
設(shè),則FD的中點(diǎn)為
,
因?yàn)?/span>,
由拋物線的定義知: ,
解得或
(舍去).
由,解得
.
所以拋物線C的方程為.
(II)(ⅰ)由(I)知,
設(shè),
因?yàn)?/span>,則
,
由得
,故
,
故直線AB的斜率為,
因?yàn)橹本和直線AB平行,
設(shè)直線的方程為
,
代入拋物線方程得,
由題意,得
.
設(shè),則
,
.
當(dāng)時(shí),
,
可得直線AE的方程為,
由,
整理可得,
直線AE恒過點(diǎn).
當(dāng)時(shí),直線AE的方程為
,過點(diǎn)
,
所以直線AE過定點(diǎn).
(ⅱ)由(ⅰ)知,直線AE過焦點(diǎn),
所以,
設(shè)直線AE的方程為,
因?yàn)辄c(diǎn)在直線AE上,
故,
設(shè),
直線AB的方程為,
由于,
可得,
代入拋物線方程得,
所以,
可求得,
,
所以點(diǎn)B到直線AE的距離為
.
則的面積
,
當(dāng)且僅當(dāng)即
時(shí)等號(hào)成立.
所以的面積的最小值為16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)如圖,我市有一個(gè)健身公園,由一個(gè)直徑為2km的半圓和一個(gè)以為斜邊的等腰直角三角形
構(gòu)成,其中
為
的中點(diǎn).現(xiàn)準(zhǔn)備在公園里建設(shè)一條四邊形健康跑道
,按實(shí)際需要,四邊形
的兩個(gè)頂點(diǎn)
分別在線段
上,另外兩個(gè)頂點(diǎn)
在半圓上,
,且
間的距離為1km.設(shè)四邊形
的周長為
km.
(1)若分別為
的中點(diǎn),求
長;
(2)求周長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于給定的大于1的正整數(shù)n,設(shè),其中
,且
記滿足條件的所有x的和為
,
(1)求(2)設(shè)
,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某社區(qū)居民的家庭年收入所年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計(jì)數(shù)據(jù)表:
收入x (萬元) | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
支出y (萬元) | 6.2 | 7.5 | 8.0 | 8.5 | 9.8 |
據(jù)上表得回歸直線方程 =
x+
,其中
=0.76,
=
﹣
,據(jù)此估計(jì),該社區(qū)一戶收入為15萬元家庭年支出為( )
A.11.4萬元
B.11.8萬元
C.12.0萬元
D.12.2萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{}中,
,且
對(duì)任意正整數(shù)都成立,數(shù)列{
}的前n項(xiàng)和為Sn。
(1)若,且
,求a;
(2)是否存在實(shí)數(shù)k,使數(shù)列{}是公比不為1的等比數(shù)列,且任意相鄰三項(xiàng)
按某順序排列后成等差數(shù)列,若存在,求出所有k值,若不存在,請(qǐng)說明理由;
(3)若。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為2的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD= AD.
(1)求證:平面PAB⊥平面PDC
(2)在線段AB上是否存在一點(diǎn)G,使得二面角C﹣PD﹣G的余弦值為 .若存在,求
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+ ,曲線f(x)在點(diǎn)(1,f(1))處的切線平行于x軸.
(1)求f(x)的最小值;
(2)比較f(x)與 的大。
(3)證明:x>0時(shí),xexlnx+ex>x3 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)某個(gè)品牌的U盤進(jìn)行壽命追蹤調(diào)查,所得情況如下面頻率分布直方圖所示.
(1)圖中縱坐標(biāo)y0處刻度不清,根據(jù)圖表所提供的數(shù)據(jù)還原y0;
(2)根據(jù)圖表的數(shù)據(jù)按分層抽樣,抽取20個(gè)U盤,壽命為1030萬次之間的應(yīng)抽取幾個(gè);
(3)從(2)中抽出的壽命落在1030萬次之間的元件中任取2個(gè)元件,求事件“恰好有一個(gè)壽命為1020萬次,一個(gè)壽命為2030萬次”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列求導(dǎo)正確的是( )
A.(x+ )′=1+
B.(log2x)′=
C.(3x)′=3xlog3x
D.(x2cosx)′=﹣2xsinx
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com