日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知曲線C的極坐標(biāo)方程為ρ=2,在以極點為直角坐標(biāo)原點O,極軸為x軸的正半軸建立的平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)).
          (1)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;
          (2)在平面直角坐標(biāo)系中,設(shè)曲線C經(jīng)過伸縮變換φ: 得到曲線C′,若M(x,y)為曲線C′上任意一點,求點M到直線l的最小距離.

          【答案】
          (1)解:曲線C的極坐標(biāo)方程為ρ=2,化為直角坐標(biāo)方程:x2+y2=4.

          直線l的參數(shù)方程為 (t為參數(shù)),消去參數(shù)t化為普通方程:y=x+3


          (2)解:曲線C經(jīng)過伸縮變換φ: ,即 ,代入曲線C的方程可得:4(x′)2+(y′)2=4,即得到曲線C′: =1.

          若M(x,y)為曲線C′上任意一點,設(shè)M(cosθ,2sinθ),點M到直線l的距離d= = = ,當(dāng)且僅當(dāng)sin(θ﹣φ)=1時取等號.

          因此最小距離為:


          【解析】(1)曲線C的極坐標(biāo)方程為ρ=2,利用互化公式化為直角坐標(biāo)方程.直線l的參數(shù)方程為 (t為參數(shù)),相減消去參數(shù)t化為普通方程.(2)曲線C經(jīng)過伸縮變換φ: ,即 ,代入曲線C的方程可得:4(x′)2+(y′)2=4,即得到曲線C′: =1.設(shè)M(cosθ,2sinθ),點M到直線l的距離d= = ,即可得出最小值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=ex﹣alnx﹣a. (Ⅰ)當(dāng)a=e時,求曲線y=f(x)在點(1,f(1))處的切線方程;
          (Ⅱ)證明:對于a∈(0,e),f(x)在區(qū)間 上有極小值,且極小值大于0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=ax2+(1﹣2a)x﹣lnx(a∈R).
          (1)求函數(shù)f(x)在區(qū)間[1,2]上的最大值;
          (2)若A(x1 , y1),B(x2 , y2),C(x0 , y0)是函數(shù)f(x)圖象上不同的三點,且x0= ,試判斷f′(x0)與 之間的大小關(guān)系,并證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知x,y∈R,m+n=7,f(x)=|x﹣1|﹣|x+1|.
          (1)解不等式f(x)≥(m+n)x;
          (2)設(shè)max{a,b}= ,求F=max{|x2﹣4y+m|,|y2﹣2x+n|}的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2c﹣a=2bcosA.
          (1)求角B的大小;
          (2)若b=2 ,求a+c的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知向量 =(sinx,mcosx), =(3,﹣1).
          (1)若 ,且m=1,求2sin2x﹣3cos2x的值;
          (2)若函數(shù)f(x)= 的圖象關(guān)于直線x= 對稱,求函數(shù)f(2x)在[ ]上的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】宋元時期數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生”的問題,松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等,如圖是源于其思想的一個程序框圖,若輸入的a=10,b=4,則輸出的n=(
          A.4
          B.5
          C.6
          D.7

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn+2=2an , 等差數(shù)列{bn}的前n項和為Tn , 且T2=S2=b3
          (1)求數(shù)列{bn}的通項公式;
          (2)令 ,求數(shù)列{cn}的前n項和Rn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)|θ|< ,n為正整數(shù),數(shù)列{an}的通項公式an=sin tannθ,其前n項和為Sn
          (1)求證:當(dāng)n為偶函數(shù)時,an=0;當(dāng)n為奇函數(shù)時,an=(﹣1) tannθ;
          (2)求證:對任何正整數(shù)n,S2n= sin2θ[1+(﹣1)n+1tan2nθ].

          查看答案和解析>>

          同步練習(xí)冊答案