日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】對(duì)任意,函數(shù)滿足:,,數(shù)列的前15項(xiàng)和為,數(shù)列滿足,若數(shù)列的前項(xiàng)和的極限存在,則________

          【答案】

          【解析】

          由題意可得,0≤fn≤1fn+1.展開代入可得,又,化為.再根據(jù)數(shù)列的前15項(xiàng)和與,解得,.可得.解出f2k1),即可得出,對(duì)n分奇偶分別求和并取極限,利用極限相等求得.

          ,,

          ,

          展開為,

          0≤fn≤1,

          ,

          化為

          ∴數(shù)列{}是周期為2的數(shù)列.

          ∵數(shù)列{}的前15項(xiàng)和為,

          7+

          解得,

          ,

          0fk+1,解得f2k1

          0,fn+1,解得f2k

          ,

          令數(shù)列的前n項(xiàng)和為,則當(dāng)n為奇數(shù)時(shí),,取極限得;

          則當(dāng)n為偶數(shù)時(shí),,取極限得;

          若數(shù)列的前項(xiàng)和的極限存在,則,

          故答案為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行調(diào)查,通過(guò)抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

          (1)求直方圖的的值;

          (2)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說(shuō)明理由.

          (3)估計(jì)居民月用水量的中位數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面立角坐標(biāo)系中,過(guò)點(diǎn)的圓的圓心軸上,且與過(guò)原點(diǎn)傾斜角為的直線相切.

          (1)求圓的標(biāo)準(zhǔn)方程;

          (2)點(diǎn)在直線上,過(guò)點(diǎn)作圓的切線、,切點(diǎn)分別為、,求經(jīng)過(guò)、、四點(diǎn)的圓所過(guò)的定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)fx)=(x2aexaR).

          1)若函數(shù)fx)有兩個(gè)不同的極值點(diǎn),求實(shí)數(shù)a的取值范圍;

          2)當(dāng)a0時(shí),若關(guān)于x的方程fx)=m存在三個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在正方體中,點(diǎn)是底面的中心,是線段的上一點(diǎn)。

          (1)若的中點(diǎn),求直線與平面所成角的正弦值;

          (2)能否存在點(diǎn)使得平面平面,若能,請(qǐng)指出點(diǎn)的位置關(guān)系,并加以證明;若不能,請(qǐng)說(shuō)明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】現(xiàn)有一長(zhǎng)為100碼,寬為80碼,球門寬為8碼的矩形足球運(yùn)動(dòng)場(chǎng)地,如圖所示,其中是足球場(chǎng)地邊線所在的直線,球門處于所在直線的正中間位置,足球運(yùn)動(dòng)員(將其看做點(diǎn))在運(yùn)動(dòng)場(chǎng)上觀察球門的角稱為視角.

          (1)當(dāng)運(yùn)動(dòng)員帶球沿著邊線奔跑時(shí),設(shè)到底線的距離為碼,試求當(dāng)為何值時(shí)最大;

          (2)理論研究和實(shí)踐經(jīng)驗(yàn)表明:張角越大,射門命中率就越大.現(xiàn)假定運(yùn)動(dòng)員在球場(chǎng)都是沿著垂直于底線的方向向底線運(yùn)球,運(yùn)動(dòng)到視角最大的位置即為最佳射門點(diǎn),以的中點(diǎn)為原點(diǎn)建立如圖所示的直角坐標(biāo)系,求在球場(chǎng)區(qū)域內(nèi)射門到球門的最佳射門點(diǎn)的軌跡.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線方程,為焦點(diǎn),為拋物線準(zhǔn)線上一點(diǎn),為線段與拋物線的交點(diǎn),定義:.

          (1)當(dāng)時(shí),求;

          (2)證明:存在常數(shù),使得.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,在全校一年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:

          喜歡甜品

          不喜歡甜品

          合計(jì)

          南方學(xué)生

          60

          20

          80

          北方學(xué)生

          10

          10

          20

          合計(jì)

          70

          30

          100

          根據(jù)表中數(shù)據(jù),問(wèn)是否有的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;

          已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至多有1人喜歡甜品的概率.

          附:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知一列非零向量滿足:,.

          1)寫出數(shù)列的通項(xiàng)公式;

          2)求出向量的夾角,并將中所有與平行的向量取出來(lái),按原來(lái)的順序排成一列,組成新的數(shù)列,,為坐標(biāo)原點(diǎn),求點(diǎn)列的坐標(biāo);

          3)令),求的極限點(diǎn)位置.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案