【題目】設奇函數在
上是單調減函數,且
,若函數
對所有的
都成立,則
的取值范圍是_____________.
【答案】t≥1或t≤0
【解析】
根據題意,由函數的奇偶性與單調性分析可得在區(qū)間[﹣1,1]上,f(x)max=f(-1),據此若f(x)≤t2﹣t+1對所有的x∈[﹣1,1]都成立,必有1≤t2﹣t+1恒成立,即t2﹣t≥0恒成立,解t2﹣t≥0即可得答案.
根據題意,函數f(x)在[﹣1,1]上是減函數,則在區(qū)間[﹣1,1]上,f(x)max=f(-1),
又由f(x)為奇函數,則f(-1)=﹣f(1)=1,
若f(x)≤t2﹣t+1對所有的x∈[﹣1,1]都成立,
必有1≤t2﹣t+1恒成立,即t2﹣t≥0恒成立,
解可得:t≥1或t≤0,
則t的取值范圍為:t≥1或t≤0,
故答案為:t≥1或t≤0.
科目:高中數學 來源: 題型:
【題目】某公司決定對旗下的某商品進行一次評估,該商品原來每件售價為25元,年銷售8萬件.
(1)據市場調查,若價格每提高1元,銷售量將相應減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?
(2)為了抓住2022年冬奧會契機,擴大該商品的影響力,提高年銷售量.公司決定立即對該商品進行全面技術革新和銷售策略改革,并提高定價到元.公司擬投入
萬作為技改費用,投入50萬元作為固定宣傳費用,投入
萬元作為浮動宣傳費用.試問:當該商品改革后的銷售量
至少達到多少萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓:
的離心率為
,過左焦點
且斜率為
的直線交橢圓
于
兩點,線段
的中點為
,直線
:
交橢圓
于
兩點.
(1)求橢圓的方程;
(2)求證:點在直線
上;
(3)是否存在實數,使得
?若存在,求出
的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數
.若曲線
在點
處的切線方程為
(
為自然對數的底數).
(1)求函數的單調區(qū)間;
(2)若關于的不等式
在(0,+
)上恒成立,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com