日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知正項數(shù)列{an}中,對于一切的n∈N*均有an2≤an-an+1成立.
          (1)證明:數(shù)列{an}中的任意一項都小于1;
          (2)探究an數(shù)學(xué)公式的大小,并證明你的結(jié)論.

          解:(1)an2≤an-an+1,得an+1≤an-an2
          ∵在數(shù)列{an}中an>0,
          ∴an+1>0,
          ∴an-an2>0,
          ∴0<an<1
          故數(shù)列{an}中的任意一項都小于1.
          (2)由(1)知,
          那么,
          由此猜想:(n≥2).下面用數(shù)學(xué)歸納法證明:
          ①當(dāng)n=2時,顯然成立;
          ②當(dāng)n=k時(k≥2,k∈N)時,假設(shè)猜想正確,即,
          那么,
          ∴當(dāng)n=k+1時,猜想也正確
          綜上所述,對于一切n∈N*,都有
          分析:(1)根據(jù)正項數(shù)列{an},以及an2≤an-an+1,可得0<an+1≤an-an2,解此不等式即可證明結(jié)論;
          (2)根據(jù)(1),不難得出a1<1,a2<1,利用數(shù)學(xué)歸納法證明即可.證明時先證:①當(dāng)n=1時成立.②再假設(shè)n=k(k≥1)時,成立,即,再遞推到n=k+1時,成立即可.
          點評:本題主要考查數(shù)列與不等式問題和數(shù)學(xué)歸納法,對探究性問題先歸納,再猜想,最后利用數(shù)學(xué)歸納法證明,數(shù)學(xué)歸納法的關(guān)鍵是遞推環(huán)節(jié),要符合假設(shè)的模型才能成立,屬中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知正項數(shù)列{an}滿足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*
          (1)求證:數(shù)列{
          an
          2n+1
          }
          為等差數(shù)列,并求數(shù)列{an}的通項an
          (2)設(shè)bn=
          1
          an
          ,求數(shù)列{bn}的前n項和為Sn,并求Sn的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          定義:稱
          n
          a1+a2+…+an
          為n個正數(shù)a1,a2,…,an的“均倒數(shù)”,已知正項數(shù)列{an}的前n項的“均倒數(shù)”為
          1
          2n
          ,則
          lim
          n→∞
          nan
          sn
          ( 。
          A、0
          B、1
          C、2
          D、
          1
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知正項數(shù)列an中,a1=2,點(
          an
          an+1)
          在函數(shù)y=x2+1的圖象上,數(shù)列bn中,點(bn,Tn)在直線y=-
          1
          2
          x+3
          上,其中Tn是數(shù)列bn的前項和.(n∈N+).
          (1)求數(shù)列an的通項公式;
          (2)求數(shù)列bn的前n項和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知正項數(shù)列{an}滿足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
          (1)求證:數(shù)列{bn}為等比數(shù)列;
          (2)記Tn為數(shù)列{
          1
          log2bn+1log2bn+2
          }
          的前n項和,是否存在實數(shù)a,使得不等式Tn<log0.5(a2-
          1
          2
          a)
          對?n∈N+恒成立?若存在,求出實數(shù)a的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知正項數(shù)列{an},Sn=
          1
          8
          (an+2)2

          (1)求證:{an}是等差數(shù)列;
          (2)若bn=
          1
          2
          an-30
          ,求數(shù)列{bn}的前n項和.

          查看答案和解析>>

          同步練習(xí)冊答案