日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 某市環(huán)保研究所對(duì)市中心每天環(huán)境污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中綜合污染指數(shù)f(x)與時(shí)間x(小時(shí))的關(guān)系為f(x)=|
          1
          2
          sin
          π
          32
          x+
          1
          3
          -a
          |+2a,x∈[0,24],其中a為與氣象有關(guān)的參數(shù),且a∈[
          1
          3
          ,
          3
          4
          ]
          .若將每天中f(x)的最大值作為當(dāng)天的綜合污染指數(shù),并記作M(a).
          (Ⅰ)令t=
          1
          2
          sin
          π
          32
          x
          ,x∈[0,24],求t的取值范圍;
          (Ⅱ)求函數(shù)M(a)的解析式;
          (Ⅲ)為加強(qiáng)對(duì)環(huán)境污染的整治,市政府規(guī)定每天的綜合污染指數(shù)不得超過2,試問目前市中心的綜合污染指數(shù)是否超標(biāo)?
          分析:(I)利用正弦函數(shù)的性質(zhì),可求t的取值范圍;
          (Ⅱ)分類討論求最值,即可求函數(shù)M(a)的解析式;
          (Ⅲ)由(Ⅱ)知M(a)的最大值為
          23
          12
          ,它小于2,即可得出結(jié)論.
          解答:解:(Ⅰ)因?yàn)閤∈[0,24],所以
          πx
          32
          ∈[0,
          4
          ]
          ,所以sin(
          πx
          32
          )∈[0,1]
          ,故t∈[0,
          1
          2
          ]

          (Ⅱ)因?yàn)?span id="15yllih" class="MathJye">a∈[
          1
          3
          3
          4
          ],所以0≤a-
          1
          3
          5
          12
          1
          2
          ,
          所以f(t)=|t-(a-
          1
          3
          )|+2a=
          -t+3a-
          1
          3
          ,t∈[0,a-
          1
          3
          ]
          t+a+
          1
          3
          ,t∈[a-
          1
          3
          ,
          1
          2
          ]

          當(dāng)t∈[0,a-
          1
          3
          ]
          時(shí),f(t)max=f(0)=3a-
          1
          3
          ;
          當(dāng)t∈[a-
          1
          3
          ,
          1
          2
          ]
          ,f(t)max=f(
          1
          2
          )=
          5
          6
          +a

          f(0)-f(
          1
          2
          )=2a-
          7
          6

          當(dāng)
          1
          3
          ≤a≤
          7
          12
          ,f(0)≤f(
          1
          2
          )
          ,M(a)=f(
          1
          2
          )=
          5
          6
          +a

          當(dāng)
          7
          12
          <a≤
          3
          4
          ,f(0)>f(
          1
          2
          )
          ,M(a)=f(0)=3a-
          1
          3

          所以M(a)=
          5
          6
          +a,a∈[
          1
          3
          7
          12
          ]
          3a-
          1
          3
          ,a∈(
          7
          12
          ,
          3
          4
          ]

          (Ⅲ)由(Ⅱ)知M(a)的最大值為
          23
          12
          ,它小于2,所以目前市中心的綜合污染指數(shù)沒有超標(biāo).
          點(diǎn)評(píng):本題考查三角函數(shù)的性質(zhì),考查分類討論的數(shù)學(xué)思想,考查學(xué)生分析解決問題的能力,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          某市環(huán)保研究所對(duì)市中心每天環(huán)境污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合污染指數(shù)f(x)與時(shí)間x(小時(shí))的關(guān)系為f(x)=|
          x
          x2+1
          +
          1
          3
          -a|+2a
          ,x∈[{0,24}],其中a與氣象有關(guān)的參數(shù),且a∈[0,
          3
          4
          ]
          ,若用每天f(x)的最大值為當(dāng)天的綜合污染指數(shù),并記作M(a).
          (1)令t=
          x
          x2+1
          ,x∈[0,24]
          ,求t的取值范圍;
          (2)求函數(shù)M(a);
          (3)市政府規(guī)定,每天的綜合污染指數(shù)不得超過2,試問目前市中心的綜合污染指數(shù)是多少?是否超標(biāo)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          某市環(huán)保研究所對(duì)市中心每天環(huán)境污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中綜合污染指數(shù)與時(shí)間x(小時(shí))的關(guān)系為=||+2a,,其中a為與氣象有關(guān)的參數(shù),且.若將每天中的最大值作為當(dāng)天的綜合污染指數(shù),并記作M(a) .

          (Ⅰ)令t=,,求t的取值范圍;

          (Ⅱ) 求函數(shù)M(a)的解析式;

          (Ⅲ) 為加強(qiáng)對(duì)環(huán)境污染的整治,市政府規(guī)定每天的綜合污染指數(shù)不得超過2,試問目前市中心的綜合污染指數(shù)是否超標(biāo)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇高考數(shù)學(xué)預(yù)測(cè)試卷(解析版) 題型:解答題

          某市環(huán)保研究所對(duì)市中心每天環(huán)境污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合污染指數(shù)f(x)與時(shí)間x(小時(shí))的關(guān)系為,x∈[{0,24}],其中a與氣象有關(guān)的參數(shù),且,若用每天f(x)的最大值為當(dāng)天的綜合污染指數(shù),并記作M(a).
          (1)令,求t的取值范圍;
          (2)求函數(shù)M(a);
          (3)市政府規(guī)定,每天的綜合污染指數(shù)不得超過2,試問目前市中心的綜合污染指數(shù)是多少?是否超標(biāo)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省南通市海安縣高考回歸課本專項(xiàng)檢測(cè)數(shù)學(xué)試卷(一)(解析版) 題型:解答題

          某市環(huán)保研究所對(duì)市中心每天環(huán)境污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合污染指數(shù)f(x)與時(shí)間x(小時(shí))的關(guān)系為,x∈[{0,24}],其中a與氣象有關(guān)的參數(shù),且,若用每天f(x)的最大值為當(dāng)天的綜合污染指數(shù),并記作M(a).
          (1)令,求t的取值范圍;
          (2)求函數(shù)M(a);
          (3)市政府規(guī)定,每天的綜合污染指數(shù)不得超過2,試問目前市中心的綜合污染指數(shù)是多少?是否超標(biāo)?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案