日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù).

          1)求函數(shù)的單調(diào)區(qū)間及極值;

          2)若函數(shù)上有唯一零點,證明:.

          【答案】(1)的減區(qū)間為,增區(qū)間為,極小值為,無極大值(2)見解析

          【解析】

          1)求出函數(shù)的定義域以及導(dǎo)數(shù),利用導(dǎo)數(shù)求出函數(shù)的單調(diào)區(qū)間,并由單調(diào)性得出函數(shù)的極值;

          2)利用參變量分離法得出關(guān)于的方程上有唯一解,構(gòu)造函數(shù),得出,構(gòu)造函數(shù),求出該函數(shù)的導(dǎo)數(shù),判斷導(dǎo)數(shù)的符號,得出函數(shù)的單調(diào)性,求出函數(shù)的最小值轉(zhuǎn)化即可。

          1的定義域為,,

          當(dāng)時,,為減函數(shù);

          當(dāng)時,為增函數(shù),

          有極小值,無極大值,

          的減區(qū)間為,增區(qū)間為,極小值為,無極大值;

          2)函數(shù)上有唯一零點,即當(dāng)時,方程有唯一解,

          有唯一解,令,則

          ,則,

          當(dāng)時,,故函數(shù)為增函數(shù),

          ,

          上存在唯一零點,則,且,

          當(dāng)時,,

          當(dāng)時,,上有最小值.ly.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

          Ⅰ)當(dāng),求曲線在點處的切線方程;

          Ⅱ)求函數(shù)的單調(diào)區(qū)間;

          Ⅲ)已知函數(shù)處取得極小值,不等式的解集為,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】A,B兩城相距100 km,在兩地之間距Ax km處的D地建一核電站給A,B兩城供電.為保證城市安全,核電站與城市距離不得少于10 km.已知供電費用與供電距離的平方和供電量之積成正比,比例系數(shù)λ=0.25.若A城供電量為20億度/月,B城為10億度/月.

          (1)求x的取值范圍;

          (2)把月供電總費用y表示成x的函數(shù);

          (3)核電站建在距A城多遠(yuǎn),才能使供電費用最?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中為常數(shù).

          1)若不等式的解集是,求此時的解析式;

          2)在(1)的條件下,設(shè)函數(shù),若在區(qū)間上是單調(diào)遞增函數(shù),求實數(shù)的取值范圍;

          3)是否存在實數(shù)使得函數(shù)上的最大值是?若存在,求出的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平行四邊形中,,,以為折痕將△折起,使點到達點的位置,且

          1)證明:平面平面;

          2為線段上一點,為線段上一點,且,求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線()關(guān)于直線對稱的直線為,直線與橢圓分別交于點A,MAN,記直線的斜率為

          (1)求的值;

          (2)當(dāng)變化時,直線是否恒過定點?若恒過定點,求出該定點坐標(biāo);若不恒過定點,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)討論的極值;

          (2)若對任意恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】正項數(shù)列的前項和為,且.

          )試求數(shù)列的通項公式;

          )設(shè),求的前項和為.

          )在()的條件下,若對一切恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C過點A(﹣1,),B),F為橢圓C的左焦點.

          Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

          Ⅱ)若點B為直線l1x+y+2=0與直線l2:2xy+4=0的交點,過點B的直線1與橢圓C交于D,E兩點,求DEF面積的最大值,以及此時直線l的方程.

          查看答案和解析>>

          同步練習(xí)冊答案