日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.請在答題紙指定區(qū)域內(nèi) 作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
          A.如圖,圓O的直徑AB=6,C為圓周上一點,BC=3,過C作圓的切線l,過A作l的垂線AD,AD分別與直線l、圓交于點D、E.求∠DAC的度數(shù)與線段AE的長.
          B.已知二階矩陣A=
          2a
          b0
          屬于特征值-1的一個特征向量為
          1
          -3
          ,求矩陣A的逆矩陣.

          C.已知極坐標(biāo)系的極點在直角坐標(biāo)系的原點,極軸與x軸的正半軸重合,曲線C的極坐標(biāo)方程ρ2cos2θ+3ρ2sin2θ=3,直線l的參數(shù)方程為
          x=-
          3
          t
          y=1+t
          (t為參數(shù),t∈{R}).試求曲線C上點M到直線l的距離的最大值.
          D.(1)設(shè)x是正數(shù),求證:(1+x)(1+x2)(1+x3)≥8x3
          (2)若x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3是否仍然成立?如果仍成立,請給出證明;如果不成立,請舉出一個使它不成立的x的值.
          分析:A.由題意,連接OC,可得△ACB是含有60°角的直角三角形,結(jié)合切線的性質(zhì)和等邊對等角算出∠DAC的度數(shù),進而根據(jù)BC=3算出線段AE的長.
          B.根據(jù)特征向量的定義,用待定系數(shù)法可求出矩陣A的值,再用逆矩陣的公式即可求出矩陣A的逆矩陣.
          C.分別將曲線C與直線l化成普通方程,然后將直線l平移到與曲線C相切,即可得到與l較遠的切線到l的距離即為所求.
          D.(1)利用基本不等式,結(jié)合同向兩個不等式相乘,即可得到(1+x)(1+x2)(1+x3)≥8x3成立;
          (2)分兩種情況:x為正數(shù)和x為負數(shù)或零加以討論,并結(jié)合因式分解判斷積的符號,不難得到對任意x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3仍然成立.
          解答:解:A.如圖,連接OC,可得BC=OB=OC=3,
          因此∠CBO=60°,由于∠DCA=∠CBO,
          所以∠DCA=60°,結(jié)合AD⊥DC得∠DAC=30°.
          又因為∠ACB=90°,得∠CAB=30°,所以∠EAB=60°,
          從而∠ABE=30°,于是AE=
          1
          2
          AB=3.
          B.根據(jù)題意,得
          2a
          b0
          1
          -3
          =
          1
          -3
          ,即
          2-3a
          b
          =
          1
          -3
          ,可得
          2-3a=1
          b=-3
          ,解之得a=
          1
          3
          ,b=-3
          A=
          2
          1
          3
          -30
          ,再由逆矩陣公式可得A的逆矩陣為A-1=
          0-
          1
          3
          32
          ;
          C.將曲線C的極坐標(biāo)方程化成普通方程,得
          x2
          3
          +y2=1
          ,
          直線l的普通方程為:x+
          3
          y
          -
          3
          =0
          ,
          設(shè)動直線m:x+
          3
          y
          +n=0,與曲線C相切,
          聯(lián)解
          x2
          3
          +y2=1
          x+
          3
          y+n=0
          ,由根的判別式,解得n=±
          6

          檢驗得當(dāng)n=
          6
          時,直線m與曲線C的切點到直線l的距離最大,
          這個最大距離為d=
          |
          6
          +
          3
          |
          1+3
          =
          3
          +
          6
          2

          ∴曲線C上點M到直線l的距離的最大值是
          3
          +
          6
          2

          D.(1)∵x是正數(shù),∴1+x≥2
          x
          ,1+x2≥2x,1+x3≥2
          x3

          由于以上3個不等式的兩邊都是正數(shù),所以將它們相乘可得:
          (1+x)(1+x2)(1+x3)≥2
          x
          •2x•2
          x3
          =8x3,
          即不等式:(1+x)(1+x2)(1+x3)≥8x3對任意正數(shù)x恒成立;
          (2)①當(dāng)x>0時,由(1)的結(jié)論可得(1+x)(1+x2)(1+x3)≥8x3成立;
          ②當(dāng)x≤0時,(1+x)(1+x2)(1+x3)=(1+x)2(1+x2)(1-x+x2)=(1+x)2(1+x2)[(x-
          1
          2
          2+
          3
          4
          ]
          而(1+x)2>0,1+x2>0且(x-
          1
          2
          2+
          3
          4
          3
          4
          >0,可得(1+x)(1+x2)(1+x3)>0
          因為8x3≤0,所以(1+x)(1+x2)(1+x3)>8x3
          綜上所述,對任意x∈R,都有不等式(1+x)(1+x2)(1+x3)≥8x3成立.
          點評:本題通過幾道解答題,考查了參數(shù)方程與極坐標(biāo)、矩陣變換、不等式的證明和平面幾何證明等理科附加知識的掌握,屬于綜合性較強的中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          選做題在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.
          A選修4-1:幾何證明選講
          如圖,延長⊙O的半徑OA到B,使OA=AB,DE是圓的一條切線,E是切點,過點B作DE的垂線,垂足為點C.
          求證:∠ACB=
          1
          3
          ∠OAC.
          B選修4-2:矩陣與變換
          已知矩陣A=
          .
          11
          21
          .
          ,向量
          β
          =
          1
          2
          .求向量
          a
          ,使得A2
          a
          =
          β

          C選修4-3:坐標(biāo)系與參數(shù)方程
          已知橢圓C的極坐標(biāo)方程為ρ2=
          a
          3cos2θ+4sin2θ
          ,焦距為2,求實數(shù)a的值.
          D選修4-4:不等式選講
          已知函數(shù)f(x)=(x-a)2+(x-b)2+(x-c)2+
          (a+b+c)2
          3
          (a,b.c為實數(shù))的最小值為m,若a-b+2c=3,求m的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (選做題)在A,B,C,D四小題中只能選做2題,每小題10分,共計20分.請在答題卡指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟.
          A.選修4-1:幾何證明選講
          如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點,BM的延長線交⊙O于N,過
          N點的切線交CA的延長線于P.
          (1)求證:PM2=PA•PC;
          (2)若⊙O的半徑為2
          3
          ,OA=
          3
          OM,求MN的長.
          B.選修4-2:矩陣與變換
          曲線x2+4xy+2y2=1在二階矩陣M=
          .
          1a
          b1
          .
          的作用下變換為曲線x2-2y2=1,求實數(shù)a,b的值;
          C.選修4-4:坐標(biāo)系與參數(shù)方程
          在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=
          2
          cos(θ+
          π
          4
          )
          ,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
          x=1+
          4
          5
          y=-1-
          3
          5
          (t為參數(shù)),求直線l被圓C所截得的弦長.
          D.選修4-5:不等式選講
          設(shè)a,b,c均為正實數(shù).
          (1)若a+b+c=1,求a2+b2+c2的最小值;
          (2)求證:
          1
          2a
          +
          1
          2b
          +
          1
          2c
          1
          b+c
          +
          1
          c+a
          +
          1
          a+b

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          選做題:在A、B、C、D四小題中只能選做2題,每小題10分,共20分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
          A.選修4-1:幾何證明選講
          如圖,PA切⊙O于點A,D為PA的中點,過點D引割線交⊙O于B、C兩點.求證:∠DPB=∠DCP.
          B.選修4-2:矩陣與變換
          設(shè)M=
          .
          10
          02
          .
          ,N=
          .
          1
          2
          0
          01
          .
          ,試求曲線y=sinx在矩陣MN變換下的曲線方程.
          C.選修4-4:坐標(biāo)系與參數(shù)方程
          在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=
          2
          cos(θ+
          π
          4
          )
          ,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
          x=1+
          4
          5
          t
          y=-1-
          3
          5
          t
          (t為參數(shù)),求直線l被圓C所截得的弦長.
          D.選修4-5:不等式選講
          解不等式:|2x+1|-|x-4|<2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

           選做題(在A、B、C、D四小題中只能選做兩題,并將選作標(biāo)記用2B鉛筆涂黑,每小題10分,共20分,請在答題指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟).
          A、(選修4-1:幾何證明選講)
          如圖,BD為⊙O的直徑,AB=AC,AD交BC于E,求證:AB2=AE•AD
          B、(選修4-2:矩形與變換)
          已知a,b實數(shù),如果矩陣M=
          1a
          b2
          所對應(yīng)的變換將直線3x-y=1變換成x+2y=1,求a,b的值.
          C、(選修4-4,:坐標(biāo)系與參數(shù)方程)
          設(shè)M、N分別是曲線ρ+2sinθ=0和ρsin(θ+
          π
          4
          )=
          2
          2
          上的動點,判斷兩曲線的位置關(guān)系并求M、N間的最小距離.
          D、(選修4-5:不等式選講)
          設(shè)a,b,c是不完全相等的正數(shù),求證:a+b+c>
          ab
          +
          bc
          +
          ca

          查看答案和解析>>

          同步練習(xí)冊答案