日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標(biāo)系中,橢圓 的離心率為,直線ly=2上的點(diǎn)和橢圓上的點(diǎn)的距離的最小值為1.

          (Ⅰ) 求橢圓的方程;

          (Ⅱ) 已知橢圓的上頂點(diǎn)為A,點(diǎn)B,C上的不同于A的兩點(diǎn),且點(diǎn)B,C關(guān)于原點(diǎn)對稱,直線AB,AC分別交直線l于點(diǎn)EF.記直線的斜率分別為,

          ① 求證: 為定值;

          ② 求△CEF的面積的最小值.

          【答案】(Ⅰ)(Ⅱ)①詳見解析②

          【解析】試題分析:

          (1)由題意求得 的值,結(jié)合橢圓焦點(diǎn)位于 軸上寫出標(biāo)準(zhǔn)方程即可;

          (2)①中,分別求得 的值,然后求解其乘積即可證得結(jié)論;

          ②中,聯(lián)立直線與橢圓的方程,利用面積公式得出三角形面積的解析式,最后利用均值不等式求得面積的最小值即可.

          試題解析:

          (Ⅰ)由題知,由,

          所以

          故橢圓的方程為

          (Ⅱ)① 證法一:設(shè),則,

          因?yàn)辄c(diǎn)B,C關(guān)于原點(diǎn)對稱,則,

          所以

          證法二:直線AC的方程為,

          ,

          解得,同理,

          因?yàn)?/span>B,O,C三點(diǎn)共線,則由,

          整理得,

          所以

          ②直線AC的方程為,直線AB的方程為,不妨設(shè),則,

          y=2,得

          ,

          所以,△CEF的面積

          ,

          ,當(dāng)且僅當(dāng)取得等號,

          所以△CEF的面積的最小值為

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=
          (1)判斷函數(shù)f(x)的奇偶性,并證明.
          (2)求函數(shù)f(x)的單調(diào)性及值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若α∈[0,π],β∈[﹣ , ],λ∈R,且(α﹣ 3﹣cosα﹣2λ=0,4β3+sinβcosβ+λ=0,則cos( +β)的值為(
          A.0
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列各式中,正確的是( 。
          A.2{x|x≤2}
          B.3∈{x|x>2且x<1}
          C.{x|x=4k±1,k∈Z}≠{x|x=2k+1,k∈Z}
          D.{x|x=3k+1,k∈Z}={x|x=3k﹣2,k∈Z}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若集合A={x|kx2﹣2x﹣1=0}只有一個(gè)元素,則實(shí)數(shù)k的取值集合為(
          A.{﹣1}
          B.{0}
          C.{﹣1,0}
          D.(﹣∞,﹣1]∪{0}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程是 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是

          (Ⅰ) 求曲線交點(diǎn)的平面直角坐標(biāo);

          (Ⅱ) 點(diǎn)分別在曲線, 上,當(dāng)最大時(shí),求的面積(為坐標(biāo)原點(diǎn)).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知曲線C1,C2的極坐標(biāo)方程分別為ρ=2cosθ, ,射線θ=φ, 與曲線C1交于(不包括極點(diǎn)O)三點(diǎn)A,B,C.

          )求證: ;

          )當(dāng)時(shí),求點(diǎn)B到曲線C2上的點(diǎn)的距離的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=loga(1﹣x)+loga(x+3)(0<a<1)
          (1)求函數(shù)f(x)的定義域;
          (2)求函數(shù)f(x)的零點(diǎn);
          (3)若函數(shù)f(x)的最小值為﹣4,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若函數(shù) 的定義域?yàn)镽,則實(shí)數(shù)a的取值范圍是

          查看答案和解析>>

          同步練習(xí)冊答案