在平面直角坐標系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=9.
(1)判斷兩圓的位置關(guān)系;
(2)求直線m的方程,使直線m被圓C1截得的弦長為4,與圓C截得的弦長是6.
(1) 兩圓相離 (2) 4x-7y+19=0
解析試題分析:(1)先由圓方程確定圓心坐標和半徑,然后根據(jù)兩圓心之間的距離與兩圓半徑和差的關(guān)系,判斷兩圓的位置關(guān)系;(2)由條件可知兩弦長分別是兩圓的直徑,故所求直線過兩圓圓心,故求連心線的直線方程即可.
試題解析:(1)圓C1的圓心C1(-3,1),半徑r1=2;
圓C2的圓心C2(4,5),半徑r2=2.∴C1C2==
>r1+r2,
∴兩圓相離.
(2)由題意得,所求的直線過兩圓的圓心,即為連心線所在直線,易得連心線所在直線方程為:4x-7y+19=0.
考點:1.兩圓位置關(guān)系的判斷;2.直線方程.
科目:高中數(shù)學 來源: 題型:解答題
已知點和圓
:
.
(Ⅰ)過點的直線
被圓
所截得的弦長為
,求直線
的方程;
(Ⅱ)試探究是否存在這樣的點:
是圓
內(nèi)部的整點(平面內(nèi)橫、縱坐標均為整數(shù)的點稱為整點),且△OEM的面積
?若存在,求出點
的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知半徑為的⊙
與
軸交于
、
兩點,
為⊙
的切線,切點為
,且
在第一象限,圓心
的坐標為
,二次函數(shù)
的圖象經(jīng)過
、
兩點.
(1)求二次函數(shù)的解析式;
(2)求切線的函數(shù)解析式;
(3)線段上是否存在一點
,使得以
、
、
為頂點的三角形與
相似.若存在,請求出所有符合條件的點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
有一個不透明的袋子,裝有4個完全相同的小球,球上分別編有數(shù)字1,2,3,4,
(1)若逐個不放回取球兩次,求第一次取到球的編號為偶數(shù)且兩個球的編號之和能被3整除的概率;
(2)若先從袋中隨機取一個球,該球的編號為a,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為b,求直線ax+by+1=0與圓有公共點的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓,圓
,動圓
與已知兩圓都外切.
(1)求動圓的圓心的軌跡
的方程(2)直線
與點
的軌跡
交于不同的兩點
、
,
的中垂線與
軸交于點
,求點
的縱坐標的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com