【題目】已知△ABC中,點A(﹣2,0),B(2,0),C(x,1) (i)若∠ACB是直角,則x=
(ii)若△ABC是銳角三角形,則x的取值范圍是 .
【答案】;(﹣2,﹣
)∪(2,+∞)
【解析】解:(i)∵△ABC中,點A(﹣2,0),B(2,0),C(x,1), ∴ =(﹣2﹣x,﹣1),
=(2﹣x,﹣1),
∵∠ACB是直角,
∴ =(﹣2﹣x)(2﹣x)+(﹣1)(﹣1)=x2﹣3=0,
解得x= .
(ii)∵△ABC中,點A(﹣2,0),B(2,0),C(x,1),
∴ =(﹣2﹣x,﹣1),
=(2﹣x,﹣1),
=(x+2,1),
=(4,0),
=(x﹣2,1),
=(﹣4,0),
∵△ABC是銳角三角形,
∴ ,解得﹣2<x<﹣
或x>2.
∴x的取值范圍是(﹣2,﹣ )∪(2,+∞).
故答案為: ,(﹣2,﹣
)∪(2,+∞).
(i)求出 =(﹣2﹣x,﹣1),
=(2﹣x,﹣1),由∠ACB是直角,則
=0,由此能求出x.
(ii)分別求出 ,
,
,
,
,
,由△ABC是銳角三角形,得
,由此能求出x的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)
的極值;
(2)當(dāng) 時,判斷函數(shù)
在區(qū)間
上零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知長方形ABCD中,AB=2,AD=1,E為DC的中點.將△ADE沿AE折起,使得平面ADE⊥平面ABCE.
(1)求證:平面BDE⊥平面ADE
(2)求三棱錐 C﹣BDE的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的半徑為1,圓心C(a,2a﹣4),(其中a>0),點O(0,0),A(0,3)
(1)若圓C關(guān)于直線x﹣y﹣3=0對稱,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點P,使|PA|=|2PO|,求圓心C的橫坐標(biāo)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)所示,已知四邊形是由
和直角梯形
拼接而成的,其中
.且點
為線段
的中點,
,
.現(xiàn)將
沿
進行翻折,使得二面角
的大小為90°,得到圖形如圖(2)所示,連接
,點
分別在線段
上.
(Ⅰ)證明: ;
(Ⅱ)若三棱錐的體積為四棱錐
體積的
,求點
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+ln(x+1).
(1)當(dāng)a=﹣ 時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[1,+∞)上為減函數(shù),求實數(shù)a的取值范圍;
(3)當(dāng)x∈[0,+∞)時,不等式f(x)﹣x≤0恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+bx2+cx在點x0處取得極大值5,其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過點(1,0),(2,0),如圖所示.求:
(1)x0的值;
(2)a,b,c的值.
(3)若曲線y=f(x)(0≤x≤2)與y=m有兩個不同的交點,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= x3﹣x2﹣
x,則f(﹣a2)與f(﹣1)的大小關(guān)系為( )
A.f(﹣a2)≤f(﹣1)
B.f(﹣a2)<f(﹣1)
C.f(﹣a2)≥f(﹣1)
D.f(﹣a2)與f(﹣1)的大小關(guān)系不確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com