定義在上的函數(shù)
同時滿足以下條件:①函數(shù)
在
上是減函數(shù),在
上是增函數(shù);②
是偶函數(shù);③函數(shù)
在
處的切線與直線
垂直.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè),若存在
使得
,求實(shí)數(shù)
的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
統(tǒng)計(jì)表明,某種型號的汽車在勻速行駛中每小時的耗油量y(升)關(guān)于行駛速度x(千米/小時)的函數(shù)解析式可以表示為:.已知甲、乙兩地相距100千米.
(I)當(dāng)汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?
(Ⅱ)當(dāng)汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)對任意
滿足
,
,若當(dāng)
時,
(
且
),且
.
(1)求實(shí)數(shù)的值;
(2)求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(
).
(1)若的定義域和值域均是
,求實(shí)數(shù)
的值;
(2)若對任意的,
,總有
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
(1)當(dāng),解不等式
;
(2)當(dāng)時,若
,使得不等式
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于函數(shù),若在定義域內(nèi)存在實(shí)數(shù)
,滿足
,則稱
為“局部奇函數(shù)”.
(Ⅰ)已知二次函數(shù),試判斷
是否為“局部奇函數(shù)”?并說明理由;
(Ⅱ)若是定義在區(qū)間
上的“局部奇函數(shù)”,求實(shí)數(shù)
的取值范圍;
(Ⅲ)若為定義域
上的“局部奇函數(shù)”,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的定義域是
,
是
的導(dǎo)函數(shù),且
在
內(nèi)恒成立.
求函數(shù)的單調(diào)區(qū)間;
若,求
的取值范圍;
(3) 設(shè)是
的零點(diǎn),
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在點(diǎn)
處的切線方程為
.
(I)求,
的值;
(II)對函數(shù)定義域內(nèi)的任一個實(shí)數(shù)
,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com