【題目】已知橢圓,橢圓
經(jīng)過(guò)橢圓C1的左焦點(diǎn)F 和上下頂點(diǎn)A,B.設(shè)斜率為k的直線l與橢圓C2相切,且與橢圓C1交于P,Q兩點(diǎn).
(1)求橢圓C2的方程;
(2)①若,求k的值;
②求PQ弦長(zhǎng)最大時(shí)k的值.
【答案】(1);(2)①
;②
.
【解析】
(1)分別求出C1的左焦點(diǎn)與上下頂點(diǎn)的坐標(biāo),可得橢圓C2的的值,可得橢圓C2的方程;
(2)①設(shè)直線l的方程為與橢圓C2聯(lián)立,由直線
與橢圓
相切,可得
,
可得的關(guān)系,同時(shí)直線l與橢圓C1的方程聯(lián)立,
,
,由韋達(dá)定理結(jié)合
,即
,代入可得k的值;
②由①知,可得
關(guān)于
的函數(shù),化簡(jiǎn)利用基本不等式可得PQ弦長(zhǎng)最大時(shí)k的值.
解:(1)由題意可知,橢圓C1的左焦點(diǎn),
上下頂點(diǎn),
,
所以橢圓C2的左頂點(diǎn)為,上下頂點(diǎn)
,
,
所以,
,
所以橢圓C2的方程為.
(2)設(shè)直線l的方程為與橢圓C2:
方程聯(lián)立,消去y得,
,
因?yàn)橹本與橢圓
相切,所以
,
整理得,,
直線l與橢圓C1的方程聯(lián)立得,,
其中.
設(shè),
,
則.
①因?yàn)?/span>,所以
,
即
,
所以.
②由①知
,
設(shè),則
.
所以當(dāng)時(shí),PQ的長(zhǎng)最大,最大值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校有40名高中生參加足球特長(zhǎng)生初選,第一輪測(cè)身高和體重,第二輪足球基礎(chǔ)知識(shí)問(wèn)答,測(cè)試員把成績(jī)(單位:分)分組如下:第1組,第2組
,第3組
,第4組
,第5組
,得到頻率分布直方圖如圖所示.
(1)根據(jù)頻率分布直方圖估計(jì)成績(jī)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)用分層抽樣的方法從成績(jī)?cè)诘?/span>3,4,5組的高中生中抽取6名組成一個(gè)小組,若再?gòu)倪@6人中隨機(jī)選出2人擔(dān)任小組負(fù)責(zé)人,求這2人來(lái)自第3,4組各1人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一隧道內(nèi)設(shè)雙行線公路,其截面由一個(gè)長(zhǎng)方形和拋物線構(gòu)成.為保證安全,要求行使車(chē)輛頂部(設(shè)為平頂)與隧道頂部在豎直方向上的高度之差至少要有0.5米.若行車(chē)道總寬度AB為6米,則車(chē)輛通過(guò)隧道的限制高度是______米(精確到0.1米)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線Γ的準(zhǔn)線方程為.焦點(diǎn)為
.
(1)求證:拋物線Γ上任意一點(diǎn)的坐標(biāo)
都滿(mǎn)足方程:
(2)請(qǐng)求出拋物線Γ的對(duì)稱(chēng)性和范圍,并運(yùn)用以上方程證明你的結(jié)論;
(3)設(shè)垂直于軸的直線與拋物線交于
兩點(diǎn),求線段
的中點(diǎn)
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某部門(mén)共有4名員工, 某次活動(dòng)期間, 周六、 周日的上午、 下午各需要安排一名員工值班,若規(guī)定同一天的兩個(gè)值班崗位不能安排給同一名員工, 則該活動(dòng)值班崗位的不同安排方式共有( )
A.120種B.132種C.144種D.156種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題:
函數(shù)
的最大值為1;
“
,
”的否定是“
”;
若
為銳角三角形,則有
;
“
”是“函數(shù)
在區(qū)間
內(nèi)單調(diào)遞增”的充分必要條件.
其中錯(cuò)誤的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的左、右焦點(diǎn)分別為
,圓
與雙曲線在第一象限內(nèi)的交點(diǎn)為M,若
.則該雙曲線的離心率為
A. 2B. 3C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《算法統(tǒng)宗》全稱(chēng)《新編直指算法統(tǒng)宗》,是屮國(guó)古代數(shù)學(xué)名著,程大位著.書(shū)中有如下問(wèn)題:“今有五人均銀四十兩,甲得十兩四錢(qián),戊得五兩六錢(qián).問(wèn):次第均之,乙丙丁各該若干?”意思是:有5人分40兩銀子,甲分10兩4錢(qián),戊分5兩6錢(qián),且相鄰兩項(xiàng)差相等,則乙丙丁各分幾兩幾錢(qián)?(注:1兩等于10錢(qián))( )
A.乙分8兩,丙分8兩,丁分8兩B.乙分8兩2錢(qián),丙分8兩,丁分7兩8錢(qián)
C.乙分9兩2錢(qián),丙分8兩,丁分6兩8錢(qián)D.乙分9兩,丙分8兩,丁分7兩
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com