日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知四邊形ABCD是邊長為1的正方形,PA⊥平面ABCD,N是PC的中點.
          (Ⅰ)若PA=1,求二面角B﹣PC﹣D的大;
          (Ⅱ)求AN與平面PCD所成角的正弦值的最大值.

          【答案】解:(Ⅰ)四邊形ABCD是邊長為1的正方形,PA⊥平面ABCD,作BM⊥PC,連接MD,
          由于RT△PBC≌RT△PDC,
          則DM⊥PC,∴∠BMD就是所求二面角的平面角.
          PA=AB=1,∴ ,∴
          同理 ,又
          在△BDM中,
          由余弦定理得 ,
          二面角B﹣PC﹣D的大小為
          (Ⅱ)設(shè)AN與平面PCD所成角為α,PA=h.
          作AQ⊥PD又CD⊥AQ,∴AQ⊥平面PCD,
          因此在RT△AQN中,
          ∵在RT△PAD中, ,
          在RT△PAC中, ,
          ,



          【解析】(Ⅰ)四邊性ABCD是邊長為1的正方形,PA⊥平面ABCD,作BM⊥PC,連接MD,可得RT△PBC≌RT△PDC,DM⊥PC,因此∠BMD就是所求二面角的平面角.再利用余弦定理即可得出.(II)設(shè)AN與平面PCD所成角為α,PA=h.作AQ⊥PD,又CD⊥AQ,可得AQ⊥平面PCD,利用直角三角形的邊角關(guān)系可得: ,再利用基本不等式的性質(zhì)即可得出.
          【考點精析】關(guān)于本題考查的空間角的異面直線所成的角,需要了解已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則才能得出正確答案.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】袋中共有8個球,其中3個紅球、2個白球、3個黑球.若從袋中任取3個球,則所取3個球中至多有1個紅球的概率是( )
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,該幾何體是由一個直三棱柱ADE﹣BCF和一個正四棱錐P﹣ABCD組合而成,AD⊥AF,AE=AD=2.
          (Ⅰ)證明:平面PAD⊥平面ABFE;
          (Ⅱ)求正四棱錐P﹣ABCD的高h,使得二面角C﹣AF﹣P的余弦值是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某市規(guī)定,高中學(xué)生在校期間須參加不少于80小時的社區(qū)服務(wù)才合格.某校隨機抽取20位學(xué)生參加社區(qū)服務(wù)的數(shù)據(jù),按時間段[75,80),[80,85),[85,90),[90,95),[95,100](單位:小時)進行統(tǒng)計,其頻率分布直方圖如圖所示.

          (1)求抽取的20人中,參加社區(qū)服務(wù)時間不少于90小時的學(xué)生人數(shù);
          (2)從參加社區(qū)服務(wù)時間不少于90小時的學(xué)生中任意選取2人,求所選學(xué)生的參加社區(qū)服務(wù)時間在同一時間段內(nèi)的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

          (1)求曲線的普通方程與曲線的直角坐標(biāo)方程;

          (2)曲線相交于兩點,求過兩點且面積最小的圓的標(biāo)準(zhǔn)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某景區(qū)修建一棟復(fù)古建筑,其窗戶設(shè)計如圖所示的圓心與矩形對角線的交點重合,且圓與矩形上下兩邊相切(為上切點),與左右兩邊相交( 為其中兩個交點),圖中陰影部分為不透光區(qū)域,其余部分為透光區(qū)域已知圓的半徑為1m設(shè),透光區(qū)域的面積為

          1關(guān)于的函數(shù)關(guān)系式,并求出定義域;

          2)根據(jù)設(shè)計要求,透光區(qū)域與矩形窗面的面積比值越大越好當(dāng)該比值最大時,求邊的長度

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知集合,對于集合的兩個非空子集 ,若,則稱為集合的一組互斥子集.記集合的所有互斥子集的組數(shù)為 (為同一組互斥子集”)

          1寫出, 的值;

          2)求

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】微信運動和運動手環(huán)的普及,增強了人民運動的積極性,每天一萬步稱為一種健康時尚,某中學(xué)在全校范圍內(nèi)內(nèi)積極倡導(dǎo)和督促師生開展“每天一萬步”活動,經(jīng)過幾個月的扎實落地工作后,學(xué)校想了解全校師生每天一萬步的情況,學(xué)校界定一人一天走路不足千步為不健康生活方式,不少于千步為超健康生活方式者,其他為一般生活方式者,學(xué)校委托數(shù)學(xué)組調(diào)查,數(shù)學(xué)組采用分層抽樣的辦法去估計全校師生的情況,結(jié)合實際及便于分層抽樣,認(rèn)定全校教師人數(shù)為人,高一學(xué)生人數(shù)為人,高二學(xué)生人數(shù)人,高三學(xué)生人數(shù),從中抽取人作為調(diào)查對象,得到了如圖所示的這人的頻率分布直方圖,這人中有人被學(xué)校界定為不健康生活方式者.

          (1)求這次作為抽樣調(diào)查對象的教師人數(shù);

          (2)根據(jù)頻率分布直方圖估算全校師生每人一天走路步數(shù)的中位數(shù)(四舍五入精確到整數(shù)步);

          (3)校辦公室欲從全校師生中速記抽取人作為“每天一萬步”活動的慰問對象,計劃學(xué)校界定不健康生活方式者鞭策性精神鼓勵元,超健康生活方式者表彰獎勵元,一般生活方式者鼓勵性獎勵元,利用樣本估計總體,將頻率視為概率,求這次校辦公室慰問獎勵金額恰好為元的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,a=
          (1)求bcosC+ccosB的值;
          (2)若cosA= ,求b+c的最大值.

          查看答案和解析>>

          同步練習(xí)冊答案