【題目】已知向量,
,函數(shù)
.
(1)求的最小正周期及
圖象的對稱軸方程;
(2)若先將的圖象上每個點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?/span>2倍,然后再向左平移
個單位長度得到函數(shù)
的圖象,求函數(shù)
在區(qū)間
內(nèi)的所有零點(diǎn)之和.
【答案】(1)最小正周期為,對稱軸方程為
;(2)
.
【解析】
(1)結(jié)合向量的數(shù)量積的坐標(biāo)運(yùn)算,化簡求得,再利用三角函數(shù)的圖象與性質(zhì),即可求解;
(2)根據(jù)三角函數(shù)的圖象變換,求得,結(jié)合函數(shù)的零點(diǎn)的概念和正弦函數(shù)的圖象的性質(zhì),即可求解.
(1)由題意,向量,
,
所以
.
可得,即函數(shù)的最小正周期為
,
令,解得
所以函數(shù)的最小正周期為
,對稱軸方程為
.
(2)由(1)知,
將的圖象上每個點(diǎn)橫坐標(biāo)變?yōu)樵瓉淼?/span>2倍,可得
,
然后將向左平移
個單位長度得到函數(shù)
,
令,即
,
由圖可知,在
上有4個零點(diǎn):
,
,
,
,
根據(jù)對稱性有,
,
所以所有零點(diǎn)和為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是公差不為零的等差數(shù)列,滿足
,且
、
、
成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足
,求數(shù)列
的前
項(xiàng)和
.
【答案】(1);(2)
【解析】試題分析:(1)設(shè)等差數(shù)列 的公差為
,由a3=7,且
、
、
成等比數(shù)列.可得
,解之得即可得出數(shù)列
的通項(xiàng)公式;
2)由(1)得,則
,由裂項(xiàng)相消法可求數(shù)列
的前
項(xiàng)和
.
試題解析:(1)設(shè)數(shù)列的公差為
,且
由題意得
,
即 ,解得
,
所以數(shù)列的通項(xiàng)公式
.
(2)由(1)得
,
.
【題型】解答題
【結(jié)束】
18
【題目】四棱錐的底面
為直角梯形,
,
,
,
為正三角形.
(1)點(diǎn)為棱
上一點(diǎn),若
平面
,
,求實(shí)數(shù)
的值;
(2)求點(diǎn)B到平面SAD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是兩條不同的直線,
是兩個不同的平面,則下列命題中正確的是( )
A. 若,
,則
B. 若,
,則
C. 若,
,
,則
D. 若,且
,點(diǎn)
,直線
,則
【答案】C
【解析】A. 若,
,則
或
;
B. 若,
,則
無交點(diǎn),即平行或異面;
C. 若,
,
,過
作平面與
分別交于直線s,t,則
,
,所以
t,再根據(jù)線面平行判定定理得
,因?yàn)?/span>
,
,所以
,即
D. 若,且
,點(diǎn)
,直線
,當(dāng)B在平面
內(nèi)時才有
,
綜上選C.
【題型】單選題
【結(jié)束】
11
【題目】甲、乙、丙、丁四位同學(xué)參加比賽,只有其中三位獲獎.甲說:“乙或丙未獲獎”;乙說:“甲、丙都獲獎”;丙說:“我未獲獎”;丁說:“乙獲獎”.四位同學(xué)的話恰有兩句是對的,則( )
A. 甲和乙不可能同時獲獎 B. 丙和丁不可能同時獲獎
C. 乙和丁不可能同時獲獎 D. 丁和甲不可能同時獲獎
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓:
的左、右焦點(diǎn)分別為
、
,若橢圓過點(diǎn)
.
(1)求橢圓的方程;
(2)若為橢圓的左、右頂點(diǎn),
(
)為橢圓上一動點(diǎn),設(shè)直線
分別交直線
:
于點(diǎn)
,判斷線段
為直徑的圓是否經(jīng)過定點(diǎn),若是,求出該定點(diǎn)坐標(biāo);若不恒過定點(diǎn),說明理由.
【答案】(1) ;(2)答案見解析.
【解析】試題分析:(1)將點(diǎn)坐標(biāo)代人橢圓方程 并與離心率聯(lián)立方程組,解得,
(2)根據(jù)點(diǎn)斜式得直線
方程,與直線
聯(lián)立解得點(diǎn)
坐標(biāo),根據(jù)向量關(guān)系得
為直徑的圓方程,最后代人橢圓方程進(jìn)行化簡,并根據(jù)恒等式成立條件求定點(diǎn)坐標(biāo).
試題解析:(1)由已知,
∴①
∵橢圓過點(diǎn),
∴②
聯(lián)立①②得,
∴橢圓方程為
(2)設(shè),已知
∵,∴
∴都有斜率
∴
∴③
∵
∴④
將④代入③得
設(shè)方程
∴方程
∴
由對稱性可知,若存在定點(diǎn),則該定點(diǎn)必在軸上,設(shè)該定點(diǎn)為
則
∴
∴,∴
∴存在定點(diǎn)或
以線段
為直徑的圓恒過該定點(diǎn).
點(diǎn)睛:定點(diǎn)的探索與證明問題
(1)探索直線過定點(diǎn)時,可設(shè)出直線方程為,然后利用條件建立
等量關(guān)系進(jìn)行消元,借助于直線系的思想找出定點(diǎn).
(2)從特殊情況入手,先探求定點(diǎn),再證明與變量無關(guān).
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù),曲線
在
處的切線經(jīng)過點(diǎn)
.
(1)證明: ;
(2)若當(dāng)時,
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,以橢圓
的任意三個頂點(diǎn)為頂點(diǎn)的三角形的面積是
.
(1)求橢圓的方程;
(2)設(shè)是橢圓
的右頂點(diǎn),點(diǎn)
在
軸上.若橢圓
上存在點(diǎn)
,使得
,求點(diǎn)
橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,已知AA1⊥底面ABC,AC⊥BC,四邊形BB1C1C為正方形,設(shè)AB1的中點(diǎn)為D,B1C∩BC1=E.
求證:(1)DE∥平面AA1C1C;
(2)BC1⊥平面AB1C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是某省從1月21日至2月24日的新冠肺炎每日新增確診病例變化曲線圖.
若該省從1月21日至2月24日的新冠肺炎每日新增確診人數(shù)按日期順序排列構(gòu)成數(shù)列,
的前n項(xiàng)和為
,則下列說法中正確的是( )
A.數(shù)列是遞增數(shù)列B.數(shù)列
是遞增數(shù)列
C.數(shù)列的最大項(xiàng)是
D.數(shù)列
的最大項(xiàng)是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)拋物線的光學(xué)原理:平行于拋物線的軸的光線,經(jīng)拋物線反射后,反射光線必經(jīng)過焦點(diǎn).然后求解此題:有一條光線沿直線射到拋物線
(
)上的一點(diǎn)
,經(jīng)拋物線反射后,反射光線所在直線的斜率為
.
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)過定點(diǎn)的直線l與拋物線交于
兩點(diǎn),與直線
交于Q點(diǎn),若
,
=
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),其中x∈[0,15],a>0,且a≠1.
(1)若1是關(guān)于x的方程f(x)﹣g(x)=0的一個解,求t的值;
(2)當(dāng)0<a<1時,不等式f(x)≥g(x)恒成立,求t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com