【題目】已知橢圓的離心率為
,焦距為
,斜率為k的直線l與橢圓M有兩個(gè)不同的交點(diǎn)A、B.
(1)求橢圓M的方程;
(2)設(shè)P(﹣2,0),直線PA與橢圓M的另一個(gè)交點(diǎn)為C,直線PB與橢圓M的另一個(gè)交點(diǎn)為D,若C、D與點(diǎn)共線,求斜率k的值.
【答案】(1) (2)2
【解析】
(1)根據(jù)橢圓的離心率公式即可求得的值,即可求得
的值,求得橢圓方程;
(2)求得直線的方程,代入橢圓方程,即可根據(jù)韋達(dá)定理即可求得
點(diǎn)坐標(biāo),同理求得
點(diǎn)坐標(biāo),即可求得
與
共線,根據(jù)向量的共線定理,即可求得直線
的斜率.
解:(1)由題意可知:,則
,
橢圓的離心率,則
,
,
橢圓
的標(biāo)準(zhǔn)方程為
;
(2)設(shè),
,
,
,
設(shè)直線的斜率
,直線
的方程為
,
聯(lián)立,消去
整理得
,
由代入上式得,整理得
,
,
,則
,
則,同理可得:
,
由,則
,
,
由、
與點(diǎn)
共線可得
與
共線,
則,
整理得,
則直線的斜率
,
的值為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】汽車(chē)的“燃油效率”是指汽車(chē)每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車(chē)在不同速度下的燃油效率情況. 下列敘述中正確的是( )
A. 消耗1升汽油,乙車(chē)最多可行駛5千米
B. 以相同速度行駛相同路程,三輛車(chē)中,甲車(chē)消耗汽油最多
C. 甲車(chē)以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油
D. 某城市機(jī)動(dòng)車(chē)最高限速80千米/小時(shí). 相同條件下,在該市用丙車(chē)比用乙車(chē)更省油
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)和
.
(1)為偶函數(shù),試判斷
的奇偶性;
(2)若方程有兩個(gè)不相等的實(shí)根,當(dāng)
時(shí)判斷
在
上的單調(diào)性;
(3)當(dāng)時(shí),問(wèn)是否存在x的值,使?jié)M足
且
的任意實(shí)數(shù)a,不等式
恒成立?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)為
,且過(guò)坐標(biāo)原點(diǎn)O,數(shù)列
的前n項(xiàng)和為
,點(diǎn)
(
)在二次函數(shù)
的圖象上.
(1)求數(shù)列的表達(dá)式;
(2)設(shè)(
),數(shù)列
的前n項(xiàng)和為
,若
對(duì)
恒成立,求實(shí)數(shù)m的取值范圍;
(3)在數(shù)列中是否存在這樣的一些項(xiàng),
,
,
,…
,…(
),這些項(xiàng)能夠依次構(gòu)成以
為首項(xiàng),q(
,
)為公比的等比數(shù)列
?若存在,寫(xiě)出
關(guān)于k的表達(dá)式;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,對(duì)于點(diǎn)
,定義變換
:將點(diǎn)
變換為點(diǎn)
,使得
其中
.這樣變換
就將坐標(biāo)系
內(nèi)的曲線變換為坐標(biāo)系
內(nèi)的曲線.則四個(gè)函數(shù)
,
,
,
在坐標(biāo)系
內(nèi)的圖象,變換為坐標(biāo)系
內(nèi)的四條曲線(如圖)依次是
A. ②,③,①,④B. ③,②,④,①C. ②,③,④,①D. ③,②,①,④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是各項(xiàng)均為非零實(shí)數(shù)的數(shù)列
的前n項(xiàng)和,給出如下兩個(gè)命題上:命題p:
是等差數(shù)列;命題q:等式
對(duì)任意
恒成立,其中k,b是常數(shù).
(1)若p是q的充分條件,求k,b的值;
(2)對(duì)于(1)中的k與b,問(wèn)p是否為q的必要條件,請(qǐng)說(shuō)明理由;
(3)若p為真命題,對(duì)于給定的正整數(shù)n和正數(shù)M,數(shù)列
滿(mǎn)足條件
,試求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】德陽(yáng)中學(xué)數(shù)學(xué)競(jìng)賽培訓(xùn)共開(kāi)設(shè)有初等代數(shù)、初等幾何、初等數(shù)論和微積分初步共四門(mén)課程,要求初等代數(shù)、初等幾何都要合格,且初等數(shù)論和微積分初步至少有一門(mén)合格,則能取得參加數(shù)學(xué)競(jìng)賽復(fù)賽的資格,現(xiàn)有甲、乙、丙三位同學(xué)報(bào)名參加數(shù)學(xué)競(jìng)賽培訓(xùn),每一位同學(xué)對(duì)這四門(mén)課程考試是否合格相互獨(dú)立,其合格的概率均相同,(見(jiàn)下表),且每一門(mén)課程是否合格相互獨(dú)立,
課 程 | 初等代數(shù) | 初等幾何 | 初等數(shù)論 | 微積分初步 |
合格的概率 |
(1)求甲同學(xué)取得參加數(shù)學(xué)競(jìng)賽復(fù)賽的資格的概率;
(2)記表示三位同學(xué)中取得參加數(shù)學(xué)競(jìng)賽復(fù)賽的資格的人數(shù),求
的分布列及期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x).
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若曲線y=f(x)與直線y=b(b∈R)有3個(gè)交點(diǎn),求實(shí)數(shù)b的取值范圍;
(3)過(guò)點(diǎn)P(﹣1,0)可作幾條直線與曲線y=f(x)相切?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心在原點(diǎn)的橢圓和拋物線
有相同的焦點(diǎn)
,橢圓
過(guò)點(diǎn)
,拋物線
的頂點(diǎn)為原點(diǎn).
求橢圓
和拋物線
的方程;
設(shè)點(diǎn)P為拋物線
準(zhǔn)線上的任意一點(diǎn),過(guò)點(diǎn)P作拋物線
的兩條切線PA,PB,其中A,B為切點(diǎn).
設(shè)直線PA,PB的斜率分別為
,
,求證:
為定值;
若直線AB交橢圓
于C,D兩點(diǎn),
,
分別是
,
的面積,試問(wèn):
是否有最小值?若有,求出最小值;若沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com