日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知四棱錐,底面為菱形,平面,,分別是的中點(diǎn).

          1證明:;

          2上的動(dòng)點(diǎn),與平面所成最大角的正切值為,求二面角的余弦值.

          【答案】(1)證明見解析;(2)

          【解析】

          要證明,我們可能證明PAD,由已知易得,我們只要能證明即可,由于底面ABCD為菱形,故我們可以轉(zhuǎn)化為證明,由已知易我們不難得到結(jié)論;EH與平面PAD所成最大角的正切值為,我們分析后可得PA的值,由的結(jié)論,我們進(jìn)而可以證明平面平面ABCD,則過EO,則平面PAC,過OS,連接ES,則為二面角的平面角,然后我們解三角形ASO,即可求出二面角的余弦值.

          1證明:由四邊形ABCD為菱形,,可得為正三角形.

          因?yàn)?/span>EBC的中點(diǎn),所以

          ,因此

          因?yàn)?/span>平面ABCD,平面ABCD,所以

          平面PAD平面PAD,

          所以平面平面PAD,

          所以

          2設(shè),HPD上任意一點(diǎn),連接AH,EH

          1平面PAD

          EH與平面PAD所成的角.

          中,,

          所以當(dāng)AH最短時(shí),最大,

          即當(dāng)時(shí),最大.

          此時(shí),

          因此,所以,

          所以

          因?yàn)?/span>平面ABCD,平面PAC,

          所以平面平面ABCD

          EO,則平面PAC,

          OS,連接ES,則為二面角的平面角,

          中,,

          FPC的中點(diǎn),在中,,

          ,

          中,

          即所求二面角的余弦值為

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知向量函數(shù),其圖象的兩條相鄰對稱軸間的距離為.

          1)求函數(shù)的解析式;

          2)將函數(shù)的圖象上各點(diǎn)的橫坐標(biāo)縮短為原來的,縱坐標(biāo)不變,再將圖象向右平移個(gè)單位,得到的圖象,求的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】從某單位45名職工中隨機(jī)抽取5名職工參加一項(xiàng)社區(qū)服務(wù)活動(dòng),用隨機(jī)數(shù)法確定這5名職工現(xiàn)將隨機(jī)數(shù)表摘錄部分如下:

          從隨機(jī)數(shù)表第一行的第5列和第6列數(shù)字開始由左到右依次選取兩個(gè)數(shù)字,則選出的第5個(gè)職工的編號為

          A.23B.37C.35D.17

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,點(diǎn),圓,點(diǎn)是圓上一動(dòng)點(diǎn),線段的中垂線與線段交于點(diǎn).

          1)求動(dòng)點(diǎn)的軌跡的方程;

          2)若直線與曲線相交于兩點(diǎn),且存在點(diǎn)(其中不共線),使得軸平分,證明:直線過定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某電動(dòng)車售后服務(wù)調(diào)研小組從汽車市場上隨機(jī)抽取20輛純電動(dòng)汽車調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)駛里程全部介于50公里和300公里之間,將統(tǒng)計(jì)結(jié)果分成5組:,繪制成如圖所示的頻率分布直方圖.

          1)求續(xù)駛里程在的車輛數(shù);

          2)求續(xù)駛里程的平均數(shù);

          3)若從續(xù)駛里程在的車輛中隨機(jī)抽取2輛車,求其中恰有一輛車的續(xù)駛里程在內(nèi)的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在三角形內(nèi),我們將三條邊的中線的交點(diǎn)稱為三角形的重心,且重心到任一頂點(diǎn)的距離是到對邊中點(diǎn)距離的兩倍類比上述結(jié)論:在三棱錐中,我們將頂點(diǎn)與對面重心的連線段稱為三棱錐的“中線”,將三棱錐四條中線的交點(diǎn)稱為它的“重心”,則棱錐重心到頂點(diǎn)的距離是到對面重心距離的______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】請用空間向量求解已知正四棱柱中,,, 分別是棱,上的點(diǎn),且滿足,

          求異面直線,所成角的余弦值;

          求面與面所成的銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面四邊形中, , ,將沿折起,使得平面平面,如圖.

          (1)求證: ;

          (2)若中點(diǎn),求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】祖暅?zhǔn)俏覈媳背瘯r(shí)期杰出的數(shù)學(xué)家和天文學(xué)家祖沖之的兒子,他提出了一條原理:“冪勢既同冪,則積不容異”.這里的“冪”指水平截面的面積,“勢”指高.這句話的意思是:兩個(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體體積相等.一般大型熱電廠的冷卻塔大都采用雙曲線型.設(shè)某雙曲線型冷卻塔是曲線 與直線, 所圍成的平面圖形繞軸旋轉(zhuǎn)一周所得,如圖所示.試應(yīng)用祖暅原理類比求球體體積公式的方法,求出此冷卻塔的體積為_______.

          查看答案和解析>>

          同步練習(xí)冊答案