【題目】已知橢圓的右焦點(diǎn)為F,過點(diǎn)
的直線l與E交于A,B兩點(diǎn).當(dāng)l過點(diǎn)F時,直線l的斜率為
,當(dāng)l的斜率不存在時,
.
(1)求橢圓E的方程.
(2)以AB為直徑的圓是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過定點(diǎn),請說明理由.
【答案】(1).(2)以AB為直徑的圓恒過定點(diǎn)
.
【解析】
(1)根據(jù)直線的斜率公式求得的值,由
,即可求得
的值,求得橢圓方程;
(2)當(dāng)直線的斜率存在,設(shè)直線的方程,代入橢圓方程,利用韋達(dá)定理及以
直徑的圓的方程,令
,即可求得
,即可判斷以
為直徑的圓過定點(diǎn)
.
(1)設(shè)橢圓半焦距為c,由題意,所以
.
l的斜率不存在時,,所以
,
.
所以橢圓E的方程為.
(2)以AB為直徑的圓過定點(diǎn).
理由如下:
當(dāng)直線的斜率存在時,設(shè)
的方程
,
,
,
,
,
聯(lián)立方程組,消去
,
整理得,
所以,
,
所以,
,
以為直徑的圓的方程:
,
即,
令,則
,
解得或
,
所以為直徑的圓過定點(diǎn)
.
當(dāng)直線l的斜率不存在時,,
,
此時以AB為直徑的圓的方程為.
顯然過點(diǎn).
綜上可知,以為直徑的圓過定點(diǎn)
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的左、右頂點(diǎn)分別為
,
,右焦點(diǎn)為
,且
上的動點(diǎn)
到
的距離的最大值為4,最小值為2.
(1)證明:.
(2)若直線:
與
相交于
,
兩點(diǎn)(
,
均不與
,
重合),且
,試問
是否經(jīng)過定點(diǎn)?若經(jīng)過,求出此定點(diǎn)坐標(biāo);若不經(jīng)過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在D上的函數(shù),如果滿足:對任意
,存在常數(shù)
,都有
成立,則稱
是D上的有界函數(shù),其中M稱為函數(shù)
的上界
已知函數(shù)
當(dāng)
,求函數(shù)
在
上的值域,并判斷函數(shù)
在
上是否為有界函數(shù),請說明理由;
若函數(shù)
在
上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“割圓術(shù)”是劉徽最突出的數(shù)學(xué)成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計(jì)算圓的周長,面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結(jié)果是當(dāng)時世界上圓周率計(jì)算的最精確數(shù)據(jù).如圖,當(dāng)分割到圓內(nèi)接正六邊形時,某同學(xué)利用計(jì)算機(jī)隨機(jī)模擬法向圓內(nèi)隨機(jī)投擲點(diǎn),計(jì)算得出該點(diǎn)落在正六邊形內(nèi)的頻率為0.8269,那么通過該實(shí)驗(yàn)計(jì)算出來的圓周率近似值為(參考數(shù)據(jù):)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求
的單調(diào)區(qū)間;
(2)若函數(shù)存在唯一的零點(diǎn)
,且
,則
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分
沙漏是古代的一種計(jì)時裝置,它由兩個形狀完全相同的容器和一個狹窄的連接管道組成,開始時細(xì)沙全部在上部容器中,細(xì)沙通過連接管道全部流到下部容器所需要的時間稱為該沙漏的一個沙時。如圖,某沙漏由上下兩個圓錐組成,圓錐的底面直徑和高均為8cm,細(xì)沙全部在上部時,其高度為圓錐高度的(細(xì)管長度忽略不計(jì)).
(1)如果該沙漏每秒鐘漏下0.02cm3的沙,則該沙漏的一個沙時為多少秒(精確到1秒)?
(2)細(xì)沙全部漏入下部后,恰好堆成個一蓋住沙漏底部的圓錐形沙堆,求此錐形沙堆的高度(精確到0.1cm).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某集團(tuán)公司為了加強(qiáng)企業(yè)管理,樹立企業(yè)形象,考慮在公司內(nèi)部對遲到現(xiàn)象進(jìn)行處罰.現(xiàn)在員工中隨機(jī)抽取200人進(jìn)行調(diào)查,當(dāng)不處罰時,有80人會遲到,處罰時,得到如下數(shù)據(jù):
處罰金額 | 50 | 100 | 150 | 200 |
遲到的人數(shù) | 50 | 40 | 20 | 0 |
若用表中數(shù)據(jù)所得頻率代替概率.
(Ⅰ)當(dāng)處罰金定為100元時,員工遲到的概率會比不進(jìn)行處罰時降低多少?
(Ⅱ)將選取的200人中會遲到的員工分為,
兩類:
類員工在罰金不超過100元時就會改正行為;
類是其他員工.現(xiàn)對
類與
類員工按分層抽樣的方法抽取4人依次進(jìn)行深度問卷,則前兩位均為
類員工的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱柱中,
,
,點(diǎn)E在
上,且
.
(1)求異面直線與
所成角的正切值:
(2)求證:平面DBE;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)為
,
,長軸端點(diǎn)為
,
,
為橢圓中心,
,斜率為
的直線
與橢圓
交于不同的兩點(diǎn),這兩點(diǎn)在
軸上的射影恰好是橢圓
的兩個焦點(diǎn).
(1)求橢圓的方程;
(2)若拋物線上存在兩個點(diǎn)
,
,橢圓
上存在兩個點(diǎn)
,
,滿足
,
,
三點(diǎn)共線,
,
,
三點(diǎn)共線,且
,求四邊形
面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com