【題目】如圖,已知三棱柱中,平面
平面
,
,
.
(1)證明:;
(2)設(shè),
,求二面角
的余弦值.
【答案】(1)證明見解析 (2)
【解析】
(1)連結(jié).由菱形得對(duì)角線垂直,再由已知及面面垂直的性質(zhì)定理得線面垂直
平面
,
平面
,從而
,于是證得線面垂直后再得線線垂直;
(2)取的中點(diǎn)為
,連結(jié)
,證得
與
都垂直后,以
為原點(diǎn),
為正方向建立空間直角坐標(biāo)系,寫出各點(diǎn)坐標(biāo),求出平面的法向量,則法向量夾角得二面角,注意要判斷二面角是銳角還是鈍角.
(1)連結(jié).
∵,四邊形
為菱形,∴
.
∵平面平面
,平面
平面
,
平面
,
,
∴平面
.
又∵,∴
平面
,∴
.
∵,
∴平面
,而
平面
,
∴
(2)取的中點(diǎn)為
,連結(jié)
.
∵,四邊形
為菱形,
,∴
,
.
又由(1)知,以
為原點(diǎn),
為正方向建立空間直角坐標(biāo)系,如圖.
設(shè),
,
,
,
∴(0,0,0),
(1,0,
),
(2,0,0),
(0,1,0),
(-1,1,
).
由(1)知,平面的一個(gè)法向量為
.
設(shè)平面的法向量為
,則
,∴
.
∵,
,∴
.
令,得
,即
.
∴,
∴二面角的余弦值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是自然對(duì)數(shù)的底數(shù),
,已知函數(shù)
,
.
(1)若函數(shù)有零點(diǎn),求實(shí)數(shù)
的取值范圍;
(2)對(duì)于,證明:當(dāng)
時(shí),
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC, .點(diǎn)D,E,N分別為棱PA,PC,BC的中點(diǎn),M是線段AD的中點(diǎn),PA=AC=4,AB=2.
(Ⅰ)求證:MN∥平面BDE;
(Ⅱ)求二面角C-EM-N的正弦值;
(Ⅲ)已知點(diǎn)H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地?cái)M建造一座大型體育館,其設(shè)計(jì)方案?jìng)?cè)面的外輪廓如圖所示,曲線是以點(diǎn)
為圓心的圓的一部分,其中
;曲線
是拋物線
的一部分;
,且
恰好等于圓
的半徑.假定擬建體育館的高
(單位:米,下同).
(1)若,
,求
、
的長度;
(2)若要求體育館側(cè)面的最大寬度不超過
米,求
的取值范圍;
(3)若,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體,過對(duì)角線
作平面
交棱
于點(diǎn)E,交棱
于點(diǎn)F,則:
①平面分正方體所得兩部分的體積相等;
②四邊形一定是平行四邊形;
③平面與平面
不可能垂直;
④四邊形的面積有最大值.
其中所有正確結(jié)論的序號(hào)為( )
A.①④B.②③C.①②④D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體,過對(duì)角線
作平面
交棱
于點(diǎn)E,交棱
于點(diǎn)F,則:
①四邊形一定是平行四邊形;
②四邊形有可能為正方形;
③四邊形在底面
內(nèi)的投影一定是正方形;
④平面有可能垂直于平面
.
其中所有正確結(jié)論的序號(hào)為( )
A.①②B.②③④C.①④D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求的單調(diào)區(qū)間;
(2)若
(i)證明恰有兩個(gè)零點(diǎn);
(ii)設(shè)為
的極值點(diǎn),
為
的零點(diǎn),且
證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABCA1B1C1中,AB⊥AC,AB=2,AC=4,AA1=2,=λ
.
(1)若λ=1,求直線DB1與平面A1C1D所成角的正弦值;
(2)若二面角B1- A1C1-D的大小為60°,求實(shí)數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,BO、AO、CO所在直線兩兩垂直,且AO=CO,∠BAO=60°,E是AC的中點(diǎn),三棱錐
的體積為
(1)求三棱錐的高;
(2)在線段AB上取一點(diǎn)D,當(dāng)D在什么位置時(shí),和
的夾角大小為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com