若數(shù)列的前
項(xiàng)和
,則數(shù)列
中數(shù)值最小的項(xiàng)是
第_________項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年上海市楊浦區(qū)高三上學(xué)期學(xué)業(yè)質(zhì)量調(diào)研理科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)是數(shù)列
的前
項(xiàng)和,對(duì)任意
都有
成立, (其中
、
、
是常數(shù)).
(1)當(dāng),
,
時(shí),求
;
(2)當(dāng),
,
時(shí),
①若,
,求數(shù)列
的通項(xiàng)公式;
②設(shè)數(shù)列中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱該數(shù)列是“
數(shù)列”.
如果,試問(wèn):是否存在數(shù)列
為“
數(shù)列”,使得對(duì)任意
,都有
,且
.若存在,求數(shù)列
的首項(xiàng)
的所
有取值構(gòu)成的集合;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆江西省紅色六校高三第一次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
對(duì)于任意的(
不超過(guò)數(shù)列的項(xiàng)數(shù)),若數(shù)列的前
項(xiàng)和等于該數(shù)列的前
項(xiàng)之積,則稱該數(shù)列為
型數(shù)列。
(1)若數(shù)列是首項(xiàng)
的
型數(shù)列,求
的值;
(2)證明:任何項(xiàng)數(shù)不小于3的遞增的正整數(shù)列都不是型數(shù)列;
(3)若數(shù)列是
型數(shù)列,且
試求
與
的遞推關(guān)系,并證明
對(duì)
恒成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆河北省高一下學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:填空題
若一個(gè)數(shù)列的第項(xiàng)等于這個(gè)數(shù)列的前
項(xiàng)和,則稱該數(shù)列為“
和數(shù)列”,若等差數(shù)列
是一個(gè)“2012和數(shù)列”,且
,則其前
項(xiàng)和最大時(shí)
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2007年普通高等學(xué)校招生全國(guó)統(tǒng)一考試?yán)砜茢?shù)學(xué)卷(上海) 題型:解答題
若有窮數(shù)列(
是正整數(shù)),滿足
即
(是正整數(shù),且
),就稱該數(shù)列為“對(duì)稱數(shù)列”。
(1)已知數(shù)列是項(xiàng)數(shù)為7的對(duì)稱數(shù)列,且
成等差數(shù)列,
,試寫出
的每一項(xiàng)
(2)已知是項(xiàng)數(shù)為
的對(duì)稱數(shù)列,且
構(gòu)成首項(xiàng)為50,公差為
的等差數(shù)列,數(shù)列
的前
項(xiàng)和為
,則當(dāng)
為何值時(shí),
取到最大值?最大值為多少?
(3)對(duì)于給定的正整數(shù),試寫出所有項(xiàng)數(shù)不超過(guò)
的對(duì)稱數(shù)列,使得
成為數(shù)列中的連續(xù)項(xiàng);當(dāng)
時(shí),試求其中一個(gè)數(shù)列的前2008項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在數(shù)列中,
是其前
項(xiàng)和, 且
,已知
,若數(shù)列
的前
項(xiàng)和為
,則項(xiàng)數(shù)
為( )
(A) 1004 (B)1005 (C)2008 (D)2010
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com