日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1C1C是邊長(zhǎng)為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5. (Ⅰ)求證:AA1⊥平面ABC;
          (Ⅱ)求證二面角A1﹣BC1﹣B1的余弦值;
          (Ⅲ)證明:在線段BC1上存在點(diǎn)D,使得AD⊥A1B,并求 的值.

          【答案】證明:(I)∵AA1C1C是正方形,∴AA1⊥AC. 又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,
          ∴AA1⊥平面ABC.
          (II)解:由AC=4,BC=5,AB=3.
          ∴AC2+AB2=BC2 , ∴AB⊥AC.
          建立如圖所示的空間直角坐標(biāo)系,則A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),
          , ,
          設(shè)平面A1BC1的法向量為 ,平面B1BC1的法向量為 =(x2 , y2 , z2).
          ,令y1=4,解得x1=0,z1=3,∴
          ,令x2=3,解得y2=4,z2=0,∴
          = = =
          ∴二面角A1﹣BC1﹣B1的余弦值為
          (III)設(shè)點(diǎn)D的豎坐標(biāo)為t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D ,
          = , =(0,3,﹣4),
          ,∴ ,
          ,解得t=


          【解析】(I)利用AA1C1C是正方形,可得AA1⊥AC,再利用面面垂直的性質(zhì)即可證明;(II)利用勾股定理的逆定理可得AB⊥AC.通過(guò)建立空間直角坐標(biāo)系,利用兩個(gè)平面的法向量的夾角即可得到二面角;(III)設(shè)點(diǎn)D的豎坐標(biāo)為t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D ,利用向量垂直于數(shù)量積得關(guān)系即可得出.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】有三個(gè)房間需要粉刷,粉刷方案要求:每個(gè)房間只用一種顏色,且三個(gè)房間顏色各不相同.已知三個(gè)房間的粉刷面積(單位:m2)分別為x,y,z,,且xyz,三種顏色涂料的粉刷費(fèi)用(單位:元/m2)分別為a,b,c,且abc,在不同的方案中,最低的總費(fèi)用(單位:元)是()
          A.ax+by+cz
          B.az+by+cx
          C.ay+bz+cx
          D.ay+bx+cz

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】數(shù)列{an}滿足a1=1,a2=2,an+2=2an+1﹣an+2. (Ⅰ)設(shè)bn=an+1﹣an , 證明{bn}是等差數(shù)列;
          (Ⅱ)求{an}的通項(xiàng)公式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一個(gè)棱錐的三視圖如圖,則該棱錐的全面積(單位:cm2)為(
          A.48+12
          B.48+24
          C.36+12
          D.36+24

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】定義在[﹣3,3]上的增函數(shù)f(x)滿足f(﹣x)=﹣f(x),且f(m+1)+f(2m﹣1)>0,求實(shí)數(shù)m的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】二次函數(shù)y=ax2+x+1(a>0)的圖象與x軸兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1 , x2
          (1)證明:(1+x1)(1+x2)=1;
          (2)證明:x1<﹣1,x2<﹣1;
          (3)若x1 , x2滿足不等式|lg |≤1,試求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列函數(shù)中值域?yàn)椋?,+∞)的是( )
          A.
          B.y=x+ ({x>0})
          C.y=
          D.y=x﹣ (x≥1)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系xOy內(nèi),動(dòng)點(diǎn)P到定點(diǎn)F(﹣1,0)的距離與P到定直線x=﹣4的距離之比為
          (1)求動(dòng)點(diǎn)P的軌跡C的方程;
          (2)設(shè)點(diǎn)A、B是軌跡C上兩個(gè)動(dòng)點(diǎn),直線OA、OB與軌跡C的另一交點(diǎn)分別為A1、B1 , 且直線OA、OB的斜率之積等于- ,問(wèn)四邊形ABA1B1的面積S是否為定值?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】)已知命題p:“x∈[1,2],x2﹣a≥0”,命題q:“x∈R,x2+2ax+2﹣a=0”.若命題“p且q”是真命題,則實(shí)數(shù)a的取值范圍為(
          A.﹣2≤a≤1
          B.a≤﹣2或1≤a≤2
          C.a≥1
          D.a≤﹣2或 a=1

          查看答案和解析>>

          同步練習(xí)冊(cè)答案