日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足a1=3,Sn+1=3(Sn+1)(n∈N*). (Ⅰ)求數(shù)列{an}的通項公式;
          (Ⅱ)在數(shù)列{bn}中,b1=9,bn+1﹣bn=2(an+1﹣an)(n∈N*),若不等式λbn>an+36(n﹣4)+3λ對一切n∈N*恒成立,求實數(shù)λ的取值范圍;
          (Ⅲ)令Tn= + + +…+ (n∈N*),證明:對于任意的n∈N* , Tn

          【答案】解:(Ⅰ)∵Sn+1=3(Sn+1)(n∈N*).

          當(dāng)n≥2時,Sn=3(Sn﹣1+1)(n∈N*).

          兩式相減得an+1=3an

          ∴數(shù)列{an}是首項為3,公比為3的等比數(shù)列,當(dāng)n≥2時,

          當(dāng)n=1時,a1=3也符合,∴

          (Ⅱ)將 ,代入bn+1﹣bn=2(an+1﹣an)(n∈N*),

          ∴bn=(bn﹣bn﹣1)+(bn﹣1﹣bn)+…+(b2﹣b1)+b1

          =4(3n﹣1+3n﹣2+…+3)+9+9

          =23n+3,(n∈N+

          ∴不等式λbn>an+36(n﹣4)+3λ對一切n∈N*恒成立

          λ>

          令f(n)= + ,則f(n+1)= ,

          ∴當(dāng)n≤4時,f(n)單調(diào)遞增,當(dāng)n≥5時,f(n)單調(diào)遞減,

          故a1<a2<a3<a4<a5>a6>a7

          ,故

          ∴實數(shù)λ的取值范圍為( ,+∞).

          (Ⅲ)證明:當(dāng)n=1時,T1=

          當(dāng)n≥2時,(2n﹣1)an﹣1=(2n﹣1)3n>23n

          =

          =

          故對于任意的n∈N*,Tn


          【解析】(Ⅰ)由Sn+1=3(Sn+1)(n∈N*).

          得當(dāng)n≥2時,Sn=3(Sn﹣1+1)(n∈N*).

          兩式相減得an+1=3an,得數(shù)列{an}是首項為3,公比為3的等比數(shù)列,即可.(Ⅱ)可得 ,bn=(bn﹣bn﹣1)+(bn﹣1﹣bn)+…+(b2﹣b1)+b1=23n+3,(n∈N+

          不等式λbn>an+36(n﹣4)+3λ對一切n∈N*恒成立

          λ>

          令f(n)= + ,利用單調(diào)性實數(shù)λ的取值范圍.(Ⅲ)當(dāng)n≥2時,(2n﹣1)an﹣1=(2n﹣1)3n>23n

          =

          【考點精析】本題主要考查了數(shù)列的通項公式的相關(guān)知識點,需要掌握如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能正確解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知a,b,c為△ABC的內(nèi)角A,B,C的對邊,滿足 = ,函數(shù)f(x)=sinωx(ω>0)在區(qū)間[0, ]上單調(diào)遞增,在區(qū)間[ ,π]上單調(diào)遞減.
          (1)證明:b+c=2a;
          (2)若f( )=cos A,試判斷△ABC的形狀.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對于兩條平行直線和圓的位置關(guān)系定義如下:若兩直線中至少有一條與圓相切,則稱該位置關(guān)系為“平行相切”;若兩直線都與圓相離,則稱該位置關(guān)系為“平行相離”;否則稱為“平行相交”.已知直線l1ax+3y+6=0,l2:2x+(a+1)y+6=0與圓Cx2y2+2xb2-1(b>0)的位置關(guān)系是“平行相交”,則實數(shù)b的取值范圍為 ( )
          A.( )
          B.(0, )
          C.(0, )
          D.( )∪( ,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若函數(shù)y=f(x)是定義在R上的奇函數(shù),且在區(qū)間(﹣∞,0]上是減函數(shù),則不等式f(lnx)<﹣f(1)的解集為(
          A.(e,+∞)
          B.( ,+∞)
          C.( ,e)
          D.(0,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知等比數(shù)列{an},a1=1,a6=32,Sn是等差數(shù)列{bn}的前n項和,b1=3,S5=35.
          (1)求數(shù)列{an},{bn}的通項公式;
          (2)設(shè)cn=an+bn , 求數(shù)列{cn}的前n項和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知f(x)=Acos(ωx+φ)(其中A>0,ω>0,﹣ <φ< )的圖象如圖所示,為得到的g(x)=Acosωx的圖象,可以將f(x)的圖象(
          A.向左平移
          B.向左平移
          C.向右平移
          D.向右平移

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,給出的是計算 + + +…+ 的值的程序框圖,其中判斷框內(nèi)可填入的是(
          A.i≤2 021?
          B.i≤2 019?
          C.i≤2 017?
          D.i≤2 015?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在Rt△ACB中,∠ACB=90°,BC=2AC,分別以A、B為圓心,AC的長為半徑作扇形ACD和扇形BEF,D、E在AB上,F(xiàn)在BC上.在△ACB中任取一點,這一點恰好在圖中陰影部分的概率是(
          A.
          B.1﹣
          C.
          D.1﹣

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,已知(a2+b2)sin(A﹣B)=(a2﹣b2)sin(A+B),則△ABC的形狀(
          A.等腰三角形
          B.直角三角形
          C.等腰直角三角形
          D.等腰三角形或直角三角形

          查看答案和解析>>

          同步練習(xí)冊答案