日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C:
          x24
          +y2=1
          ,直線l與橢圓C相交于A、B兩點(diǎn),若以AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn).
          (1)試探究:點(diǎn)O到直線AB的距離是否為定值,若是,求出該定值;若不是,請說明理由;
          (2)求△AOB面積S的最小值.
          分析:(1)設(shè)A(x1,y1),B(x2,y2),分類討論:①當(dāng)直線AB斜率不存在時(shí),由橢圓的對稱性,可求原點(diǎn)O到直線的距離;②當(dāng)直線AB斜率存在時(shí),設(shè)直線AB的方程為y=kx+m,代入橢圓方程,利用韋達(dá)定理及點(diǎn)到直線的距離公式,即可得到結(jié)論;
          (2)利用三角函數(shù)表示出|OA|,|OB|,進(jìn)而可求|OA||OB|的最小值,從而可求△AOB面積S的最小值.
          解答:解:(1)設(shè)A(x1,y1),B(x2,y2),
          ①當(dāng)直線AB斜率不存在時(shí),由橢圓的對稱性可知x1=x2,y1=-y2
          ∵以AB為直徑的圓D經(jīng)過坐標(biāo)原點(diǎn),∴
          OA
          OB
          =0

          ∴x1x2+y1y2=0,∴x12-y12=0
          ∵x12+4y12=4,∴|x1|=|y1|=
          2
          5
          5

          ∴原點(diǎn)O到直線的距離為d=|x1|=
          2
          5
          5

          ②當(dāng)直線AB斜率存在時(shí),設(shè)直線AB的方程為y=kx+m,代入橢圓方程,消元可得(1+4k2)x2+8kmx+4m2-4=0
          ∴x1+x2=-
          8km
          1+4k2
          ,x1x2=
          4m2-4
          1+4k2

          ∵以AB為直徑的圓D經(jīng)過坐標(biāo)原點(diǎn),∴
          OA
          OB
          =0

          ∴x1x2+y1y2=0,∴(1+k2
          4m2-4
          1+4k2
          -km×
          8km
          1+4k2
          +m2=0
          ∴5m2=4(k2+1)
          ∴原點(diǎn)O到直線的距離為d=
          |m|
          k2+1
          =
          2
          5
          5

          綜上,點(diǎn)O到直線AB的距離為定值;
          (2)由(1)可知,在直角△OAB中,點(diǎn)O到直線AB的距離|OH|=
          2
          5
          5
          ,設(shè)∠OAH=θ,則∠BOH=θ
          ∴|OA|=
          |OH|
          sinθ
          ,|OB|=
          |OH|
          cosθ

          ∴|OA||OB|=
          8
          5
          sin2θ

          ∴2θ=
          π
          2
          ,即θ=
          π
          4
          時(shí),|OA||OB|取得最小值為
          8
          5

          ∴△AOB面積S的最小值為
          4
          5
          點(diǎn)評:本題考查橢圓的標(biāo)準(zhǔn)方程,考查圓與橢圓的綜合,聯(lián)立方程,利用韋達(dá)定理是解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)圓錐曲線上任意兩點(diǎn)連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對稱軸,我們將該弦稱之為曲線的垂軸弦.已知橢圓C:
          x2
          4
          +y2=1

          (1)過橢圓C的右焦點(diǎn)作一條垂直于x軸的垂軸弦MN,求MN的長度;
          (2)若點(diǎn)P是橢圓C上不與頂點(diǎn)重合的任意一點(diǎn),MN是橢圓C的短軸,直線MP、NP分別交x軸于點(diǎn)E(xE,0)和點(diǎn)F(xF,0)(如圖),求xE?xF的值;
          (3)在(2)的基礎(chǔ)上,把上述橢圓C一般化為
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          ,MN是任意一條垂直于x軸的垂軸弦,其它條件不變,試探究xE?xF是否為定值?(不需要證明);請你給出雙曲線
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)
          中相類似的結(jié)論,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•房山區(qū)一模)已知橢圓C:
          x2
          4
          +
          y2
          3
          =1
          和點(diǎn)P(4,0),垂直于x軸的直線與橢圓C交于A,B兩點(diǎn),連結(jié)PB交橢圓C于另一點(diǎn)E.
          (Ⅰ)求橢圓C的焦點(diǎn)坐標(biāo)和離心率;
          (Ⅱ)證明直線AE與x軸相交于定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•安徽模擬)已知橢圓C:
          x2
          4
          +y2=1
          ,直線l與橢圓C相交于A、B兩點(diǎn),
          OA
          OB
          =0
          (其中O為坐標(biāo)原點(diǎn)).
          (1)試探究:點(diǎn)O到直線AB的距離是否為定值,若是,求出該定值,若不是,請說明理由;
          (2)求|OA|•|OB|的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)如圖1,已知定點(diǎn)F1(-2,0)、F2(2,0),動(dòng)點(diǎn)N滿足|
          ON
          |=1(O為坐標(biāo)原點(diǎn)),
          F1M
          =2
          NM
          ,
          MP
          MF2
          (λ∈R),
          F1M
          PN
          =0,求點(diǎn)P的軌跡方程.
          精英家教網(wǎng)
          (2)如圖2,已知橢圓C:
          x2
          4
          +y2=1的上、下頂點(diǎn)分別為A、B,點(diǎn)P在橢圓上,且異于點(diǎn)A、B,直線AP、BP與直線l:y=-2分別交于點(diǎn)M、N,
          (。┰O(shè)直線AP、BP的斜率分別為k1、k2,求證:k1•k2為定值;
          (ⅱ)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),以MN為直徑的圓是否經(jīng)過定點(diǎn)?請證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊答案