已知橢圓的右焦點F

,左、右準線分別為l
1:x=-m-1,l
2:x=m+1,且l
1、l
2分別與直線y=x相交于A、B兩點.
(1)若離心率為

,求橢圓的方程;
(2)當

·

<7時,求橢圓離心率的取值范圍.
(1)

+y
2=1.(2)

(1)由已知,得c=m,

=m+1,從而a
2=m(m+1),b
2=m.
由e=

,得b=c,從而m=1.故a=

,b=1,得所求橢圓方程為

+y
2=1.
(2)易得A(-m-1,-m-1),B(m+1,m+1),從而

=(2m+1,m+1),

=(1,m+1),故

·

=2m+1+(m+1)
2=m
2+4m+2<7,得0<m<1.
由此離心率e=

=

,故所求的離心率取值范圍為

練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知焦點在

軸上的橢圓

經(jīng)過點

,直線

交橢圓于

不同的兩點.

(1)求該橢圓的標準方程;
(2)求實數(shù)

的取值范圍;
(3)是否存在實數(shù)

,使△

是以

為直角的直角三角形,若存在,求出

的值,若不存,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知橢圓

=1(a>b>0)的離心率為

,且過點A(0,1).
(1)求橢圓的方程;
(2)過點A作兩條互相垂直的直線分別交橢圓于點M、N,求證:直線MN恒過定點P

.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知橢圓C:

=1(a>b>0)的離心率為

,與過右焦點F且斜率為k(k>0)的直線相交于A、B兩點.若

=3

,則k=________.

查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
雙曲線C與橢圓

=1有相同的焦點,直線y=

x為C的一條漸近線.求雙曲線C的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知橢圓

=1(a>b>0),F(xiàn)
1、F
2分別為橢圓的左、右焦點,A為橢圓的上頂點,直線AF
2交橢圓于另一點B.

(1)若∠F
1AB=90°,求橢圓的離心率;
(2)若

=2

,

·

=

,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
橢圓

=1的離心率為

,則k的值為________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
橢圓

的左,右焦點分別為

,焦距為

,若直線

與橢圓

的一個交點

滿足

,則該橢圓的離心率為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓C:

+

=1(a>b>0)的離心率為

.雙曲線x
2-y
2=1的漸近線與橢圓C有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓C的方程為( )
查看答案和解析>>