日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)定義在R上的函數(shù)f(x)=
          1
          |x-2
          ,x≠2
          1,x=2
          ,若關(guān)于x的方程f2(x)+af(x)+b=3有3個(gè)不同實(shí)數(shù)解x1、x2、x3,且x1<x2<x3,則下列說法中正確的是

          ①a+b=0;②x1+x3>2x2;③x1+x3=5;④.x12+x22+x32=14.
          分析:題中原方程f2(x)+af(x)+b=3有且只有3個(gè)不同實(shí)數(shù)解,即要求對(duì)應(yīng)于方程:f(x)=某個(gè)常數(shù),有3個(gè)不同實(shí)數(shù)解,故先根據(jù)題意作出f(x)的簡圖,由圖可知,只有當(dāng)f(x)=1時(shí),它有三個(gè)根.故關(guān)于x的方程f2(x)+af(x)+b=3有且只有3個(gè)不同實(shí)數(shù)解,即解分別是1,2,3.從而問題解決.
          解答:解:作出f(x)的簡圖:
          由圖可知,只有當(dāng)f(x)=1時(shí),它有三個(gè)根.
          故關(guān)于x的方程f2(x)+af(x)+b=3有且只有3個(gè)不同實(shí)數(shù)解,
          即解分別是1,2,3.
          故x12+x22+x32=12+22+32=14.
          故答案為:④.
          點(diǎn)評(píng):本小題主要考查函數(shù)的零點(diǎn)與方程根的關(guān)系、函數(shù)的圖象等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)定義在R上的函數(shù)f(x)=
          1
          x-2
          (x>2)
          1
          2-x
          (x<2)
          1(x=2)
          ,若關(guān)于x的方程f2(x)+af(x)+b=3有且只有3個(gè)不同實(shí)數(shù)解x1、x2、x3,且x1<x2<x3,則x12+x22+x32=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)定義在R上的函數(shù)f(x)滿足f(x)•f(x+2)=3,若f(1)=2,則f(5)=
          2
          2
          ;f(2011)=
          3
          2
          3
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•順義區(qū)二模)設(shè)定義在R上的函數(shù)f(x)是最小正周期為2π的偶函數(shù),f′(x)是f(x)的導(dǎo)函數(shù).當(dāng)x∈[0,π]時(shí),0<f(x)<1;當(dāng)x∈(0,π)且x≠
          π
          2
          時(shí),(x-
          π
          2
          )f′(x)<0
          .則函數(shù)y=f(x)-cosx在[-3π,3π]上的零點(diǎn)個(gè)數(shù)為
          6
          6

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)定義在R上的函數(shù)f(x)滿足f(x+π)=f(x-π),f(
          π
          2
          -x
          )=f(
          π
          2
          +x
          ),當(dāng)x∈[-
          π
          2
          ,
          π
          2
          ]
          時(shí),0<f(x)<1;當(dāng)x∈(-
          π
          2
          ,
          π
          2
          )
          且x≠0時(shí),x•f′(x)<0,則y=f(x)與y=cosx的圖象在[-2π,2π]上的交點(diǎn)個(gè)數(shù)是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)定義在R上的函數(shù)f(x)同時(shí)滿足以下條件:①f(x+1)=-f(x)對(duì)任意的x都成立;②當(dāng)x∈[0,1]時(shí),f(x)=ex-e•cos
          πx
          2
          +m(其中e=2.71828…是自然對(duì)數(shù)的底數(shù),m是常數(shù)).記f(x)在區(qū)間[2013,2016]上的零點(diǎn)個(gè)數(shù)為n,則(  )
          A、m=-
          1
          2
          ,n=6
          B、m=1-e,n=5
          C、m=-
          1
          2
          ,n=3
          D、m=e-1,n=4

          查看答案和解析>>

          同步練習(xí)冊(cè)答案