日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓C: (a>b>0)的離心率為,短軸長(zhǎng)為2.直線(xiàn)l:y=kx+m與橢圓C交于M,N兩點(diǎn),又l與直線(xiàn) 分別交于A,B兩點(diǎn),其中點(diǎn)A在第一象限,點(diǎn)B在第二象限,且△OAB的面積為2(O為坐標(biāo)原點(diǎn)).

          (1)求橢圓C的方程;

          (2)求的取值范圍.

          【答案】(1);(2)

          【解析】試題分析:

          (1)由離心率及可得,于是可得橢圓的方程.(2)結(jié)合題意逐步求解,先求得點(diǎn)A,B的坐標(biāo),并根據(jù)點(diǎn)的位置得到;然后根據(jù)直線(xiàn)與橢圓的位置關(guān)系可得,于是.由△OAB的面積為2計(jì)算可得,最后根據(jù)數(shù)量積的定義將表示,并可得到所求范圍.

          試題解析:

          (1)∵離心率e= ,

          ,解得a2=2,

          ∴橢圓的方程為+y2=1.

          (2)由可得點(diǎn)A的坐標(biāo)為 ,

          可得點(diǎn)B的坐標(biāo)為

          又點(diǎn)A在第一象限,點(diǎn)B在第二象限,

          ∴m2(1-4k2)>0,

          又m2≥0,

          ∴1-4k2>0.

          ∵|AB|=,

          原點(diǎn)到直線(xiàn)的距離為,即△OAB底邊AB上的高為,

          ∴S△OAB·· = 2,

          ∴m2=1-4k2.

          消去y整理得(1+2k2)x2+4kmx+2m2-2=0,

          ∵直線(xiàn)與橢圓交于兩點(diǎn),

          ∴Δ=16k2m2-4(1+2k2)(2m2-2)=48k2>0,解得k2>0.

          設(shè)M(x1,y1),N(x2,y2),

          則x1+x2=-,x1·x2,

          ∴y1·y2=(kx1+m)(kx2+m)=,

          ·=x1x2+y1y2-7.

          ∵0<k2<,

          ∴1+2k2,

          ,

          ·.

          的取值范圍為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓的極坐標(biāo)方程為:ρ2-4ρcos(θ-)+6=0.

          (1)將極坐標(biāo)方程化為普通方程;

          (2)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知實(shí)數(shù)滿(mǎn)足約束條件

          1)若點(diǎn)在上述不等式所表示的平面區(qū)域內(nèi),求實(shí)數(shù)的取值范圍.

          2)若,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為何值時(shí),方程組

          1)有一個(gè)實(shí)數(shù)解,并求出方程組的解集;

          2)有兩個(gè)不相等的實(shí)數(shù)解;

          3)沒(méi)有實(shí)數(shù)解.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某幼兒園雛鷹班的生活老師統(tǒng)計(jì)2018年上半年每個(gè)月的20日的晝夜溫差,和患感冒的小朋友人數(shù)(/人)的數(shù)據(jù)如下:

          溫差

          患感冒人數(shù)

          8

          11

          14

          20

          23

          26

          其中,.

          (Ⅰ)請(qǐng)用相關(guān)系數(shù)加以說(shuō)明是否可用線(xiàn)性回歸模型擬合的關(guān)系;

          (Ⅱ)建立關(guān)于的回歸方程(精確到),預(yù)測(cè)當(dāng)晝夜溫差升高時(shí)患感冒的小朋友的人數(shù)會(huì)有什么變化?(人數(shù)精確到整數(shù))

          參考數(shù)據(jù):.參考公式:相關(guān)系數(shù):,回歸直線(xiàn)方程是, ,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】滿(mǎn)足約束條件且向量,則的取值范圍是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知單調(diào)遞增的等比數(shù)列滿(mǎn)足,且的等差中項(xiàng).

          (Ⅰ)求數(shù)列的通項(xiàng)公式;

          (Ⅱ)若,對(duì)任意正數(shù)數(shù) 恒成立,試求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某商場(chǎng)舉行購(gòu)物抽獎(jiǎng)促銷(xiāo)活動(dòng),規(guī)定每位顧客從裝有編號(hào)為01,2,3四個(gè)相同小球的抽獎(jiǎng)箱中,每次取出一球,記下編號(hào)后放回,連續(xù)取兩次,若取出的兩個(gè)小球號(hào)碼之和等于6,則中一等獎(jiǎng),等于5中二等獎(jiǎng),等于43中三等獎(jiǎng).

          1)求中三等獎(jiǎng)的概率;

          2)求中獎(jiǎng)的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù), .

          1)若曲線(xiàn)處的切線(xiàn)與直線(xiàn)垂直,求實(shí)數(shù)的值;

          2)設(shè),若對(duì)任意兩個(gè)不等的正數(shù),都有恒成立,求實(shí)數(shù)的取值范圍;

          3)若上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案