日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】商品的銷售價格與銷售量密切相關(guān),為更精準(zhǔn)地為商品確定最終售價,商家對商品A按以下單價進行試售,得到如下數(shù)據(jù):

          單價x(元)

          15

          16

          17

          18

          19

          銷量y(件)

          60

          58

          55

          53

          49

          1)求銷量y關(guān)于x的線性回歸方程;

          2)預(yù)計今后的銷售中,銷量與單價服從(1)中的線性回歸方程,已知每件商品A的成本是10元,為了獲得最大利潤,商品A的單價應(yīng)定為多少元?(結(jié)果保留整數(shù))

          (附:,.(15×60+16×58+17×55+18×53+19×494648152+162+172+182+1921455

          【答案】1; 224

          【解析】

          1)由已知求得的值,則線性回歸方程可求;

          2)寫出獲得利潤的函數(shù),再由二次函數(shù)求最值.

          1)由題意,,,

          ,

          y關(guān)于x的線性回歸方程為

          2)由題意,獲得的利潤

          當(dāng)時,取最大值.

          ∴單價應(yīng)定為24元,可獲得最大利潤.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示單位:cm,四邊形ABCD是直角梯形,求圖中陰影部分繞AB旋轉(zhuǎn)一周所成幾何體的表面積和體積

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公司有4家直營店, , ,現(xiàn)需將6箱貨物運送至直營店進行銷售,各直營店出售該貨物以往所得利潤統(tǒng)計如下表所示根據(jù)此表,該公司獲得最大總利潤的運送方式有

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐中,,,分別是,的中點,上且.

          (I)求證:;

          (II)求直線與平面所成角的正弦值;

          (III)在線段上是否存在點,使二面角的大小為?若存在,求出的長;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,是圓錐的底面的直徑,是圓上異于的任意一點,為直徑的圓與的另一個交點為的中點.現(xiàn)給出以下結(jié)論:

          為直角三角形

          ②平面平面

          ③平面必與圓錐的某條母線平行

          其中正確結(jié)論的個數(shù)是

          A. 0B. 1C. 2D. 3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖為陜西博物館收藏的國寶——·金筐寶鈿團花紋金杯,杯身曲線內(nèi)收,玲瓏嬌美,巧奪天工,是唐代金銀細(xì)作的典范之作.該杯型幾何體的主體部分可近似看作是雙曲線的右支與直線,,圍成的曲邊四邊形軸旋轉(zhuǎn)一周得到的幾何體,如圖分別為的漸近線與,的交點,曲邊五邊形軸旋轉(zhuǎn)一周得到的幾何體的體積可由祖恒原理(祖恒原理:冪勢既同,則積不容異).意思是:兩等高的幾何體在同高處被截得的兩截面面積均相等,那么這兩個幾何體的體積相等,那么這兩個幾何體的體積相等),據(jù)此求得該金杯的容積是_____.(杯壁厚度忽略不計)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù),曲線在點處的切線方程為.

          (1)求的解析式;

          (2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形的面積為定值,并求此定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】1)已知動點P與兩定點F1(﹣1,0)、F21,0)的連線的斜率之積為,求動點P的軌跡方程.

          2)已知雙曲線的漸近線方程為y±x,且與橢圓1有公共焦點,求此雙曲線的標(biāo)準(zhǔn)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐的底面是直角梯形,,,是兩個邊長為2的正三角形,,的中點,的中點.

          (1)證明:平面.

          (2)在線段上是否存在一點,使直線與平面所成角的正弦值為?若存在,求出點的位置;若不存在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案