日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù)f(x)=ax2+(b﹣1)x+3.
          (1)若不等式f(x)>0的解為(﹣1, ),求不等式bx2﹣3x+a≤0的解集;
          (2)若f(1)=4,a>0,b>0,求ab的最大值.

          【答案】
          (1)解:若不等式f(x)>0的解為(﹣1, ),

          可得﹣1, 是ax2+(b﹣1)x+3=0的兩根,

          即有﹣1+ =﹣ ,﹣ = ,

          解得a=﹣2,b=2,

          不等式bx2﹣3x+a≤0即為2x2﹣3x﹣2≤0,

          解得﹣ ≤x≤2,

          即解集為[﹣ ,2]


          (2)解:f(1)=4,即為a+b=2,

          由a>0,b>0,可得a+b≥2 ,

          則ab≤1,當(dāng)且僅當(dāng)a=b=1取得最大值1.

          即有ab的最大值為1.


          【解析】1、由不等式的解集與一元二次方程根之間的關(guān)系,利用韋達(dá)定理可求出a=﹣2,b=2,得到新的不等式,解出即得結(jié)果。
          2、由已知條件可得a+b=2,根據(jù)基本不等式求最值可得ab≤1,當(dāng)且僅當(dāng)a=b=1取得最大值1.
          【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的最值及其幾何意義(利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) (a≠0).
          (1)已知函數(shù)f(x)在點(diǎn)(0,1)處的斜率為1,求a的值;
          (2)求函數(shù)f(x)的單調(diào)區(qū)間;
          (3)若a>0,g(x)=x2emx , 且對(duì)任意的x1 , x2∈[0,2],f(x1)≥g(x2)恒成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)
          (1)求函數(shù)y=f(x)的最小正周期;
          (2)已知△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且a,b,c成等比數(shù)列,求f(B)的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=
          (1)若a=﹣1,求f(x)的單調(diào)區(qū)間;
          (2)若f(x)有最大值3,求a的值.
          (3)若f(x)的值域是(0,+∞),求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知復(fù)數(shù)z=bi(b∈R), 是實(shí)數(shù),i是虛數(shù)單位.
          (1)求復(fù)數(shù)z;
          (2)若復(fù)數(shù)(m+z)2所表示的點(diǎn)在第一象限,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若函數(shù)f(x),g(x)滿足 f(x)g(x)dx=0,則f(x),g(x)為區(qū)間[﹣1,1]上的一組正交函數(shù),給出三組函數(shù): ①f(x)=sin x,g(x)=cos x;
          ②f(x)=x+1,g(x)=x﹣1;
          ③f(x)=x,g(x)=x2
          其中為區(qū)間[﹣1,1]上的正交函數(shù)的組數(shù)是(
          A.0
          B.1
          C.2
          D.3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】f(x)是定義在D上的函數(shù),若存在區(qū)間[m,n]D,使函數(shù)f(x)在[m,n]上的值域恰為[km,kn],則稱函數(shù)f(x)是k型函數(shù).給出下列說法:①f(x)=3﹣ 不可能是k型函數(shù); ②若函數(shù)y=﹣ x2+x是3型函數(shù),則m=﹣4,n=0;
          ③設(shè)函數(shù)f(x)=x3+2x2+x(x≤0)是k型函數(shù),則k的最小值為 ;
          ④若函數(shù)y= (a≠0)是1型函數(shù),則n﹣m的最大值為
          下列選項(xiàng)正確的是(
          A.①③
          B.②③
          C.②④
          D.①④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若過定點(diǎn)M(﹣1,0)且斜率為k的直線與圓x2+4x+y2﹣5=0在第一象限內(nèi)的部分有交點(diǎn),則k的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在邊長(zhǎng)為2a的正方形ABCD中,E,F(xiàn)分別為AB,BC的中點(diǎn),沿圖中虛線將3個(gè)三角形折起,使點(diǎn)A,B,C重合,重合后記為點(diǎn)P.

          問:
          (1)折起后形成的幾何體是什么幾何體?
          (2)這個(gè)幾何體共有幾個(gè)面,每個(gè)面的三角形有何特點(diǎn)?
          (3)每個(gè)面的三角形面積為多少?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案