【題目】已知某款冰淇淋的包裝盒為圓臺,盒蓋為直徑為的圓形紙片,每盒冰淇淋中包含有香草口味、巧克力口味和草莓口味冰淇淋球各一個,假定每個冰淇淋球都是半徑為
的球體,三個冰淇淋球兩兩相切,且都與冰淇淋盒蓋、盒底和盒子側(cè)面的曲面相切,則冰淇淋盒的體積為______.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形中,
,
,過
點(diǎn)作
的垂線,交
的延長線于點(diǎn)
,
.連結(jié)
,交
于點(diǎn)
,如圖1,將
沿
折起,使得點(diǎn)
到達(dá)點(diǎn)
的位置,如圖2.
(1)證明:平面平面
;
(2)若為
的中點(diǎn),
為
的中點(diǎn),且平面
平面
,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某地區(qū)某種昆蟲產(chǎn)卵數(shù)和溫度有關(guān).現(xiàn)收集了一只該品種昆蟲的產(chǎn)卵數(shù)(個)和溫度
(
)的7組觀測數(shù)據(jù),其散點(diǎn)圖如所示:
根據(jù)散點(diǎn)圖,結(jié)合函數(shù)知識,可以發(fā)現(xiàn)產(chǎn)卵數(shù)和溫度
可用方程
來擬合,令
,結(jié)合樣本數(shù)據(jù)可知
與溫度
可用線性回歸方程來擬合.根據(jù)收集到的數(shù)據(jù),計(jì)算得到如下值:
27 | 74 | 182 |
表中,
.
(1)求和溫度
的回歸方程(回歸系數(shù)結(jié)果精確到
);
(2)求產(chǎn)卵數(shù)關(guān)于溫度
的回歸方程;若該地區(qū)一段時間內(nèi)的氣溫在
之間(包括
與
),估計(jì)該品種一只昆蟲的產(chǎn)卵數(shù)的范圍.(參考數(shù)據(jù):
,
,
,
,
.)
附:對于一組數(shù)據(jù),
,…,
,其回歸直線
的斜率和截距的最小二乘估計(jì)分別為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年10月,德國爆發(fā)出“芳香烴門”事件,即一家權(quán)威的檢測機(jī)構(gòu)在德國銷售的奶粉中隨機(jī)抽檢了16款(德國4款,法國8款,荷蘭4款),其中8款檢測出芳香烴礦物油成分,此成分會嚴(yán)重危害嬰幼兒的成長,有些奶粉已經(jīng)遠(yuǎn)銷至中國.A地區(qū)聞訊后,立即組織相關(guān)檢測員對這8款品牌的奶粉進(jìn)行抽檢,已知該地區(qū)有6家嬰幼兒用品商店在售這幾種品牌的奶粉,甲、乙、丙3名檢測員分別負(fù)責(zé)進(jìn)行檢測,每人至少抽檢1家商店,且檢測過的商店不重復(fù)檢測,則甲檢測員檢測2家商店的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】法國數(shù)學(xué)家布豐提出一種計(jì)算圓周率的方法——隨機(jī)投針法,受其啟發(fā),我們設(shè)計(jì)如下實(shí)驗(yàn)來估計(jì)
的值:先請200名同學(xué)每人隨機(jī)寫下一個橫、縱坐標(biāo)都小于1的正實(shí)數(shù)對
;再統(tǒng)計(jì)兩數(shù)的平方和小于1的數(shù)對
的個數(shù)
;最后再根據(jù)統(tǒng)計(jì)數(shù)
來估計(jì)
的值.已知某同學(xué)一次試驗(yàn)統(tǒng)計(jì)出
,則其試驗(yàn)估計(jì)
為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的離心率是
,左右焦點(diǎn)分別為
,
,過點(diǎn)
的動直線
與橢圓相交于
,
兩點(diǎn),當(dāng)直線
過
時,
的周長為
.
(1)求橢圓的方程;
(2)當(dāng)時,求直線
方程;
(3)已知點(diǎn),直線
,
的斜率分別為
,
.問是否存在實(shí)數(shù)
,使得
恒成立?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)為
,過
(M不過橢圓的頂點(diǎn)和中心)且斜率為k直線l交橢圓于
兩點(diǎn),與y軸交于點(diǎn)N,且
.
(1)若直線l過點(diǎn),求
的周長;
(2)若直線l過點(diǎn),求線段
的中點(diǎn)R的軌跡方程;
(3)求證:為定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線l:ax+ y﹣1=0與x,y軸的交點(diǎn)分別為A,B,直線l與圓O:x2+y2=1的交點(diǎn)為C,D,給出下面三個結(jié)論:①a≥1,S△AOB=
;②a≥1,|AB|<|CD|;③a≥1,S△COD<
.其中,所有正確結(jié)論的序號是( 。
A.①②B.②③C.①③D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,記集合
.
(1)對于數(shù)列,寫出集合
;
(2)若,是否存在
,使得
?若存在,求出一組符合條件的
;若不存在,說明理由.
(3)若,把集合
中的元素從小到大排列,得到的新數(shù)列為
,若
,求
的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com