【題目】如圖,三棱柱中,側(cè)面
是邊長(zhǎng)為2的菱形,且
,
,四棱錐
的體積為2,點(diǎn)
在平面
內(nèi)的正投影為
,且
在
上,點(diǎn)
在線段
上,且
.
(Ⅰ)證明:直線平面
;
(Ⅱ)求二面角的余弦值.
【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ) .
【解析】試題分析:(1)通過(guò)構(gòu)造輔助線FH,證明為平行四邊形,即借助線線平行證明線面平行;(2)借助底面四邊形的對(duì)角線互相垂直,建立空間直角坐標(biāo),利用向量方法求解二面角.
(Ⅰ)解析:
因?yàn)樗睦忮F的體積為2,
即,所以
又,所以
即點(diǎn)
是靠近點(diǎn)
的四等分點(diǎn),
過(guò)點(diǎn)作
交
于點(diǎn)
,所以
,
又,所以
且
,
所以四邊形為平行四邊形,
所以,所以直線
平面
.
(Ⅱ)
設(shè)的交點(diǎn)為
,
所在直線為
軸,
所在直線為
軸,過(guò)點(diǎn)
作平面
的垂線為
軸,建立空間直角坐標(biāo)系,如圖所示:
設(shè)平面的法向量為
,
,則
,
,則
,即為所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)如圖,長(zhǎng)方形材料中,已知
,
.點(diǎn)
為材料
內(nèi)部一點(diǎn),
于
,
于
,且
,
. 現(xiàn)要在長(zhǎng)方形材料
中裁剪出四邊形材料
,滿足
,點(diǎn)
、
分別在邊
,
上.
(1)設(shè),試將四邊形材料
的面積表示為
的函數(shù),并指明
的取值范圍;
(2)試確定點(diǎn)在
上的位置,使得四邊形材料
的面積
最小,并求出其最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓x2+y2-2y-1=0關(guān)于直線y=x對(duì)稱(chēng)的圓的方程是 ( )
A. (x-1)2+y2=2 B. (x+1)2+y2=2 C. (x-1)2+y2=4 D. (x+1)2+y2=4
【答案】A
【解析】圓 的標(biāo)準(zhǔn)方程為
,所以圓心為(0,1),半徑為
,圓心關(guān)于直線
的對(duì)稱(chēng)點(diǎn)是(1,0),所以圓x2+y2-2y-1=0關(guān)于直線y=x對(duì)稱(chēng)的圓的方程是
,選A.
點(diǎn)睛:本題主要考查圓關(guān)于直線的對(duì)稱(chēng)的圓的方程,屬于基礎(chǔ)題。解答本題的關(guān)鍵是求出圓心關(guān)于直線的對(duì)稱(chēng)點(diǎn),兩圓半徑相同。
【題型】單選題
【結(jié)束】
8
【題目】已知雙曲線的離心率為,焦點(diǎn)是
,
,則雙曲線方程為 ( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬, 田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機(jī)選一匹進(jìn)行一場(chǎng)比賽,則田忌的馬獲勝的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某花店每天以每枝5元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售.如果當(dāng)天賣(mài)不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購(gòu)進(jìn)17枝玫瑰花,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式;
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①假設(shè)花店在這100天內(nèi)每天購(gòu)進(jìn)17枝玫瑰花,求這100天的日利潤(rùn)(單位:元)的平均數(shù);
②若花店一天購(gòu)進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(rùn)不少于75元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐中,四邊形
是菱形,
,又
平面
,
點(diǎn)是棱
的中點(diǎn),
在棱
上,且
.
(1)證明:平面平面
;
(2)若平面
,求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y2=2px過(guò)點(diǎn)P(1,1).過(guò)點(diǎn)(0, )作直線l與拋物線C交于不同的兩點(diǎn)M,N,過(guò)點(diǎn)M作x軸的垂線分別與直線OP,ON交于點(diǎn)A,B,其中O為原點(diǎn).
(Ⅰ)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)求證:A為線段BM的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn),動(dòng)圓
經(jīng)過(guò)點(diǎn)
且和直線
相切,記動(dòng)圓的圓心
的軌跡為曲線
.
(1)求曲線的方程;
(2)設(shè)曲線上一點(diǎn)
的橫坐標(biāo)為
,過(guò)
的直線交
于一點(diǎn)
,交
軸于點(diǎn)
,過(guò)點(diǎn)
作
的垂線交
于另一點(diǎn)
,若
是
的切線,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),橢圓
:
的左焦點(diǎn)是
,離心率為
,且
上任意一點(diǎn)
到
的最短距離為
.
(1)求的方程;
(2)過(guò)點(diǎn)的直線
(不過(guò)原點(diǎn))與
交于兩點(diǎn)
、
,
為線段
的中點(diǎn).
(i)證明:直線與
的斜率乘積為定值;
(ii)求面積的最大值及此時(shí)
的斜率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com