【題目】(題文)如圖,長方形材料中,已知
,
.點(diǎn)
為材料
內(nèi)部一點(diǎn),
于
,
于
,且
,
. 現(xiàn)要在長方形材料
中裁剪出四邊形材料
,滿足
,點(diǎn)
、
分別在邊
,
上.
(1)設(shè),試將四邊形材料
的面積表示為
的函數(shù),并指明
的取值范圍;
(2)試確定點(diǎn)在
上的位置,使得四邊形材料
的面積
最小,并求出其最小值.
【答案】(1)見解析;(2)當(dāng)時,四邊形材料
的面積
最小,最小值為
.
【解析】分析:(1)通過直角三角形的邊角關(guān)系,得出和
,進(jìn)而得出四邊形材料
的面積的表達(dá)式,再結(jié)合已知尺寸條件,確定角
的范圍.
(2)根據(jù)正切的兩角差公式和換元法,化簡和整理函數(shù)表達(dá)式,最后由基本不等式,確定面積最小值及對應(yīng)的點(diǎn)在
上的位置.
詳解:解:(1)在直角中,因?yàn)?/span>
,
,
所以,
所以,
在直角中,因?yàn)?/span>
,
,
所以,
所以,
所以
,
.
(2)因?yàn)?/span>
,
令,由
,得
,
所以
,
當(dāng)且僅當(dāng)時,即
時等號成立,
此時,,
,
答:當(dāng)時,四邊形材料
的面積
最小,最小值為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
是邊長為2的正方形,
底面
,
為
的中點(diǎn),
為
的中點(diǎn).
(1)求證:平面
;
(2)求異面直線與
所成角的正切值的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幾何體的三視圖如圖所示,P是正方形ABCD對角線的交點(diǎn),G是PB的中點(diǎn).
(1)根據(jù)三視圖,畫出該幾何體的直觀圖.
(2)在直觀圖中,①證明:PD∥平面AGC;
②證明:平面PBD⊥平面AGC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),數(shù)列
滿足
,
.
(Ⅰ)當(dāng)時,求證:數(shù)列
為等差數(shù)列并求
;
(Ⅱ)證明:對于一切正整數(shù),
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某幾何體的三視圖如圖所示,P是正方形ABCD對角線的交點(diǎn),G是PB的中點(diǎn).
(1)根據(jù)三視圖,畫出該幾何體的直觀圖.
(2)在直觀圖中,①證明:PD∥平面AGC;
②證明:平面PBD⊥平面AGC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】盒子里放有外形相同且編號為1,2,3,4,5的五個小球,其中1號與2號是黑球,3號、4號與5號是紅球,從中有放回地每次取出1個球,共取兩次.
(1)求取到的2個球中恰好有1個是黑球的概率;
(2)求取到的2個球中至少有1個是紅球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面
平面
,側(cè)面
是邊長為
的等邊三角形,底面
是矩形,且
,則該四棱錐外接球的表面積等于__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某山區(qū)小學(xué)有100名四年級學(xué)生,將全體四年級學(xué)生隨機(jī)按00~99編號,并且按編號順序平均分成10組.現(xiàn)要從中抽取10名學(xué)生,各組內(nèi)抽取的編號按依次增加10進(jìn)行系統(tǒng)抽樣.
(1)若抽出的一個號碼為22,則此號碼所在的組數(shù)是多少?據(jù)此寫出所有被抽出學(xué)生的號碼;
(2)分別統(tǒng)計(jì)這10名學(xué)生的數(shù)學(xué)成績,獲得成績數(shù)據(jù)的莖葉圖如圖4所示,求該樣本的方差;
(3)在(2)的條件下,從這10名學(xué)生中隨機(jī)抽取兩名成績不低于73分的學(xué)生,求被抽取到的兩名學(xué)生的成績之和不小于154分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,側(cè)面
是邊長為2的菱形,且
,
,四棱錐
的體積為2,點(diǎn)
在平面
內(nèi)的正投影為
,且
在
上,點(diǎn)
在線段
上,且
.
(Ⅰ)證明:直線平面
;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com