【題目】已知某山區(qū)小學有100名四年級學生,將全體四年級學生隨機按00~99編號,并且按編號順序平均分成10組.現(xiàn)要從中抽取10名學生,各組內抽取的編號按依次增加10進行系統(tǒng)抽樣.
(1)若抽出的一個號碼為22,則此號碼所在的組數(shù)是多少?據(jù)此寫出所有被抽出學生的號碼;
(2)分別統(tǒng)計這10名學生的數(shù)學成績,獲得成績數(shù)據(jù)的莖葉圖如圖4所示,求該樣本的方差;
(3)在(2)的條件下,從這10名學生中隨機抽取兩名成績不低于73分的學生,求被抽取到的兩名學生的成績之和不小于154分的概率.
【答案】(1)第3組02,12,22,32,42,52,62,72,82,92. (2)(3)
【解析】試題分析:第一問根據(jù)系統(tǒng)抽樣的方法,分析出其所在的組數(shù),從而進一步確定被抽出的學生的號碼,第二問先確定成績不低于分的人數(shù)一共
人,從中任抽兩人共有
種不同的取法,成績之和不小于
分的有
種,從而求得概率.
試題解析:(1)由題意,得抽出號碼為的組數(shù)為
.
分
因為,所以第
組抽出的號碼應該為
,抽出的
名學生的號碼依次分別為:
.
分
(2)從這名學生中隨機抽取兩名成績不低于
分的學生,共有如下
種不同的取法:
.
分
其中成績之和不小于分的有如下
種:
分
故被抽取到的兩名學生的成績之和不小于分的概率為:
分
科目:高中數(shù)學 來源: 題型:
【題目】已知,如圖, ,圖中的一系列圓是圓心分別為
,
的兩組同心圓,每組同心圓的半徑依次為
,
,
,
按“加”依次遞增,點
是某兩圓的一個交點,設:
以,
為焦點,且過點
的橢圓為
;
以,
為焦點,且過點
的雙曲線為
,
則
()雙曲線
離心率
__________.
()若以
為
軸正方向,線段
中點為坐標原點建立平面直角坐標系,則
橢圓方程為__________.
(3)雙曲線漸近線方程為__________.
(4)在兩組同心圓的交點中,在橢圓上的點共__________個.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(題文)如圖,長方形材料中,已知
,
.點
為材料
內部一點,
于
,
于
,且
,
. 現(xiàn)要在長方形材料
中裁剪出四邊形材料
,滿足
,點
、
分別在邊
,
上.
(1)設,試將四邊形材料
的面積表示為
的函數(shù),并指明
的取值范圍;
(2)試確定點在
上的位置,使得四邊形材料
的面積
最小,并求出其最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:y2=2px過點P(1,1).過點(0, )作直線l與拋物線C交于不同的兩點M,N,過點M作x軸的垂線分別與直線OP,ON交于點A,B,其中O為原點.
(Ⅰ)求拋物線C的方程,并求其焦點坐標和準線方程;
(Ⅱ)求證:A為線段BM的中點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圓x2+y2-2y-1=0關于直線y=x對稱的圓的方程是 ( )
A. (x-1)2+y2=2 B. (x+1)2+y2=2 C. (x-1)2+y2=4 D. (x+1)2+y2=4
【答案】A
【解析】圓 的標準方程為
,所以圓心為(0,1),半徑為
,圓心關于直線
的對稱點是(1,0),所以圓x2+y2-2y-1=0關于直線y=x對稱的圓的方程是
,選A.
點睛:本題主要考查圓關于直線的對稱的圓的方程,屬于基礎題。解答本題的關鍵是求出圓心關于直線的對稱點,兩圓半徑相同。
【題型】單選題
【結束】
8
【題目】已知雙曲線的離心率為,焦點是
,
,則雙曲線方程為 ( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬, 田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機選一匹進行一場比賽,則田忌的馬獲勝的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設點,動圓
經(jīng)過點
且和直線
相切,記動圓的圓心
的軌跡為曲線
.
(1)求曲線的方程;
(2)設曲線上一點
的橫坐標為
,過
的直線交
于一點
,交
軸于點
,過點
作
的垂線交
于另一點
,若
是
的切線,求
的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com