日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù)f(x)=|x-3|-|x+1|,x∈R.

          (1)解不等式f(x)<-1;

          (2)設(shè)函數(shù)g(x)=|x+a|-4,且g(x)≤f(x)在x∈[-2,2]上恒成立,求實數(shù)a的取值范圍.

          【答案】見解析

          【解析】(1)函數(shù)f(x)=|x-3|-|x+1|

          故由不等式f(x)<-1可得,x>3或

          解得x>.

          (2)函數(shù)g(x)≤f(x)在x∈[-2,2]上恒成立,

          即|x+a|-4≤|x-3|-|x+1|在x∈[-2,2]上恒成立,

          在同一個坐標系中畫出函數(shù)f(x)和g(x)的圖象,如圖所示.

          故當(dāng)x∈[-2,2]時,若0≤-a≤4,則函數(shù)g(x)的圖象在函數(shù)f(x)的圖象的下方,g(x)≤f(x)在x∈[-2,2]上恒成立,

          求得-4≤a≤0,故所求的實數(shù)a的取值范圍為[-4,0].

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐,側(cè)面是邊長為的正三角形,且與底面垂直,底面的菱形, 的中點.

          (1)求證: ;

          (2)求點到平面 的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】等比數(shù)列{an}的前n項和為Sn,已知對任意的n∈N*,點(n,Sn)均在函數(shù)y=bx+r(b>0且b≠1,b,r均為常數(shù))的圖象上.

          (1)求r的值;

          (2)當(dāng)b=2時,記bn=2(log2an+1)(n∈N*),證明:對任意的n∈N*,不等式··…·成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)

          (Ⅰ)求曲線在點處的切線方程;

          (Ⅱ)恒成立,求實數(shù)的取值范圍;

          (Ⅲ)求整數(shù)的值,使函數(shù)在區(qū)間上有零點.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,平面平面,且四邊形為矩形,四邊形為直角梯形, , , , .

          1)求證: 平面;

          2)求直線與平面所成角的余弦值;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍;

          2)若函數(shù)上的最小值為3,求實數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,內(nèi)角A,B,C對邊的邊長分別是a,b,c.已知c=2,C=.

          (1)若△ABC的面積等于,求a,b;

          (2)若sinC+sin(B-A)=2sin2A,求△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如果方程cos2x-sinx+a=0在(0,]上有解,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】給出四個命題

          1若sin2A=sin2B,則ABC為等腰三角形;

          2若sinA=cosB,則ABC為直角三角形;

          3若sin2A+sin2B+sin2C<2,則ABC為鈍角三角形;

          4若cosABcosBCcosCA=1,則ABC為正三角形

          以上正確命題的是_______

          查看答案和解析>>

          同步練習(xí)冊答案