日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 本題共有2個(gè)小題,第(1)小題滿分6分,第(2)小題滿分6分.
          如圖,已知正四棱柱的底面邊長(zhǎng)是,體積是,分別是棱的中點(diǎn).

          (1)求直線與平面所成的角(結(jié)果用反三角函數(shù)表示);
          (2)求過的平面與該正四棱柱所截得的多面體的體積.

          (1). (2).

          解析試題分析:(1)連結(jié),
          直線與平面所成的角等于直線與平面所成的角.
          連結(jié),連結(jié),
          是直線與平面所成的角. 2分
          中,, 4分
          .
          直線與平面所成的角等于. 6分
          (2)正四棱柱的底面邊長(zhǎng)是,體積是,
          . 8分
          ;
          , 11分
          多面體的體積為. 12分
          考點(diǎn):本題主要考查正四棱柱的幾何特征,角的計(jì)算,體積計(jì)算。
          點(diǎn)評(píng):典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計(jì)算。在計(jì)算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,體積計(jì)算利用了“間接法”。

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直線A1B上.

          (1)求證:平面A1BC⊥平面ABB1A1;
          (2)若,AB=BC=2,P為AC中點(diǎn),求三棱錐的體積。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,矩形ABCD中,AB=3,BC=4.E,F(xiàn)分別在線段BC和AD上,EF//AB,將矩形ABEF沿EF折起.記折起后的矩形為MNEF,且平面MNEF⊥平面ECDF.

          (1)求證:NC∥平面MFD;
          (2)若EC=3,求證:ND⊥FC;
          (3)求四面體NFEC體積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如下圖所示,在直三棱柱ABCA1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)DAB的中點(diǎn).

          (1)求證:ACBC1;
          (2)求證:AC1平面CDB1;
          (3)求異面直線AC1B1C所成角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          直棱柱ABCD—A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.
          (1)求證:平面ACB1⊥平面BB1C1C;
          (2)在A1B1上是否存在一點(diǎn)P,使得DP與平面ACB1平行?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在四邊形中,,,點(diǎn)為線段上的一點(diǎn).現(xiàn)將沿線段翻折到(點(diǎn)與點(diǎn)重合),使得平面平面,連接,.

          (Ⅰ)證明:平面;
          (Ⅱ)若,且點(diǎn)為線段的中點(diǎn),求二面角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖1,在直角梯形中,,,且
          現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,的中點(diǎn),如圖2.
          (1)求證:∥平面
          (2)求證:平面;
          (3)求點(diǎn)到平面的距離.
            
                                              圖

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G為AD中點(diǎn).

          (1)請(qǐng)?jiān)诰段CE上找到點(diǎn)F的位置,使得恰有直線BF∥平面ACD,并證明這一事實(shí);
          (2)求平面BCE與平面ACD所成銳二面角的大。
          (3)求點(diǎn)G到平面BCE的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,四邊形ABCD是正方形,PB^平面ABCD,MA^平面ABCD,PB=AB=2MA.

          求證:(1)平面AMD∥平面BPC;(2)平面PMD^平面PBD.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案