日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G為AD中點(diǎn).

          (1)請?jiān)诰段CE上找到點(diǎn)F的位置,使得恰有直線BF∥平面ACD,并證明這一事實(shí);
          (2)求平面BCE與平面ACD所成銳二面角的大。
          (3)求點(diǎn)G到平面BCE的距離.

          (1)點(diǎn)F應(yīng)是線段CE的中點(diǎn)(2)(3)

          解析試題分析:解法一:以D點(diǎn)為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,使得x軸和z軸的正半軸分別經(jīng)過點(diǎn)A和點(diǎn)E,則各點(diǎn)的坐標(biāo)為D(0,0,0),A(2,0,0),E(0,0,2),
          B(2,0,1),
          (1)點(diǎn)F應(yīng)是線段CE的中點(diǎn),下面證明:

          設(shè)F是線段CE的中點(diǎn),則點(diǎn)F的坐標(biāo)為,
          ,取平面ACD的法向量,
          ,∴BF∥平面ACD;    
          (2)設(shè)平面BCE的法向量為,則,且
          ,,
          ,不妨設(shè),則,即,
          ∴所求角θ滿足,∴;    
          (3)由已知G點(diǎn)坐標(biāo)為(1,0,0),∴
          由(2)平面BCE的法向量為,∴所求距離.                      
          解法二:(1)由已知AB⊥平面ACD,DE⊥平面ACD,∴AB∥ED,

          設(shè)F為線段CE的中點(diǎn),H是線段CD的中點(diǎn),連接FH,則FH∥=
          ∴FH∥=AB,∴四邊形ABFH是平行四邊形,∴BF∥AH,
          由BF?平面ACD內(nèi),AH?平面ACD,∴BF∥平面ACD;
          (2)由已知條件可知△ACD即為△BCE在平面ACD上的射影,
          設(shè)所求的二面角的大小為θ,則,
          易求得BC=BE=,CE=,∴
          ,∴,而,∴;        
          (3)連接BG、CG、EG,得三棱錐C﹣BGE,由ED⊥平面ACD,∴平面ABED⊥平面ACD,又CG⊥AD,∴CG⊥平面ABED,設(shè)G點(diǎn)到平面BCE的距離為h,則VC﹣BGE=VG﹣BCE,由,,
          即為點(diǎn)G到平面BCE的距離.
          考點(diǎn):空間幾何體線面平行的判定二面角點(diǎn)面距的計算
          點(diǎn)評:當(dāng)已知條件中出現(xiàn)了從同一點(diǎn)出發(fā)的三線兩兩垂直或可以平移為三線兩兩垂直時,常利用空間向量求解,只需寫出各點(diǎn)坐標(biāo)代入相應(yīng)公式即可

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在四棱錐中,底面是矩形,側(cè)棱⊥底面,,的中點(diǎn),的中點(diǎn).

          (1)證明:平面
          (2)若為直線上任意一點(diǎn),求幾何體的體積;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          本題共有2個小題,第(1)小題滿分6分,第(2)小題滿分6分.
          如圖,已知正四棱柱的底面邊長是,體積是,分別是棱的中點(diǎn).

          (1)求直線與平面所成的角(結(jié)果用反三角函數(shù)表示);
          (2)求過的平面與該正四棱柱所截得的多面體的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知四棱柱的底面是邊長為1的正方形,側(cè)棱垂直底邊ABCD四棱柱,,
          E是側(cè)棱AA1的中點(diǎn),求

          (1)求異面直線與B1E所成角的大小;
          (2)求四面體的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直.,,,

          (1)求直線與平面所成角的正弦值;
          (2)線段上是否存在點(diǎn),使// 平面?若存在,求出;若不存在,說明理由.1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成直二面角,如圖二,在二面角中.

          (1)求證:BD⊥AC;
          (2)求D、C之間的距離;
          (3)求DC與面ABD成的角的正弦值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在正三棱柱中,的中點(diǎn),是線段上的動點(diǎn)(與端點(diǎn)不重合),且.

          (1)若,求證:;
          (2)若直線與平面所成角的大小為,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,正方形與梯形所在的平面互相垂直,,,,點(diǎn)在線段上.

          (I)當(dāng)點(diǎn)中點(diǎn)時,求證:∥平面;
          (II)當(dāng)平面與平面所成銳二面角的余弦值為時,求三棱錐 的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,三棱錐P-ABC中,PC平面ABC,PC=AC=2, AB=BC,D是PB上一點(diǎn),且CD平面PAB

          (1)求證:AB平面PCB;
          (2)求異面直線AP與BC所成角的大;
          (3)求二面角C-PA-B 的大小的余弦值。

          查看答案和解析>>

          同步練習(xí)冊答案