【題目】已知直線(xiàn)過(guò)點(diǎn)
,圓
:
.
(1)當(dāng)直線(xiàn)與圓相切時(shí),求直線(xiàn)
的一般方程;
(2)若直線(xiàn)與圓相交,且弦長(zhǎng)為,求直線(xiàn)
的一般方程.
【答案】(1)或
(2)
;
【解析】
(1)把圓的一般式化為標(biāo)準(zhǔn)方程,討論直線(xiàn)斜率存在或不存在時(shí)是否與圓相切的情況。當(dāng)不存在時(shí),可直接判斷相切;當(dāng)斜率存在時(shí),利用點(diǎn)斜式表示出直線(xiàn)方程,結(jié)合點(diǎn)到直線(xiàn)的距離即可求得斜率k,進(jìn)而得到直線(xiàn)方程。
(2)根據(jù)弦長(zhǎng)與半徑,求得圓心到直線(xiàn)的距離;利用點(diǎn)斜式設(shè)出直線(xiàn)方程,根據(jù)點(diǎn)到直線(xiàn)距離即可求得斜率k,進(jìn)而得到直線(xiàn)方程。
解:(1)將圓的一般方程化為標(biāo)準(zhǔn)方程得
,
所以圓的圓心為
,半徑為1,
因?yàn)橹本(xiàn)過(guò)點(diǎn)
,所以當(dāng)直線(xiàn)
的斜率不存在時(shí),直線(xiàn)
與圓相切,
此時(shí)直線(xiàn)的方程為
;
當(dāng)直線(xiàn)的斜率存在時(shí),設(shè)斜率為,則直線(xiàn)
的方程為
,
化為一般式為。
因?yàn)橹本(xiàn)與圓相切,所以
,得
,
此時(shí)直線(xiàn)的方程為
綜上所述,直線(xiàn)方程為或
(2)因?yàn)橄议L(zhǎng)為,所以圓心到直線(xiàn)
的距離為
,
此時(shí)直線(xiàn)的斜率一定存在,設(shè)直線(xiàn)
的方程為
,圓心
到直線(xiàn)
的距離
,
由,得
,
所以
當(dāng)時(shí),直線(xiàn)
的一般方程為
;
當(dāng)時(shí),直線(xiàn)
的一般方程為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(其中
為自然對(duì)數(shù)的底,
)的導(dǎo)函數(shù)為
.
(1)當(dāng)時(shí),討論函數(shù)
在區(qū)間
上零點(diǎn)的個(gè)數(shù);
(2)設(shè)點(diǎn),
是函數(shù)
圖象上兩點(diǎn),若對(duì)任意的
,割線(xiàn)
的斜率都大于
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在某商業(yè)區(qū)周邊有 兩條公路和
,在點(diǎn)
處交匯,該商業(yè)區(qū)為圓心角
,半徑3
的扇形,現(xiàn)規(guī)劃在該商業(yè)區(qū)外修建一條公路
,與
,
分別交于
,要求
與扇形弧相切,切點(diǎn)
不在
,
上.
(1)設(shè)試用
表示新建公路
的長(zhǎng)度,求出
滿(mǎn)足的關(guān)系式,并寫(xiě)出
的范圍;
(2)設(shè),試用
表示新建公路
的長(zhǎng)度,并且確定
的位置,使得新建公路
的長(zhǎng)度最短.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
,
為坐標(biāo)原點(diǎn),
為橢圓
的左焦點(diǎn),離心率為
,直線(xiàn)
與橢圓相交于
,
兩點(diǎn).
(1)求橢圓的方程;
(2)若是弦
的中點(diǎn),
是橢圓
上一點(diǎn),求
的面積最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,求
的值;
(3)當(dāng)時(shí),
恒成立,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是邊長(zhǎng)為1的正方形,
垂直于底面
,
.
(1)求平面與平面
所成二面角的大;
(2)設(shè)棱的中點(diǎn)為
,求異面直線(xiàn)
與
所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人同時(shí)從A地趕往B地,甲先騎自行車(chē)到中點(diǎn)改為跑步,而乙則是先跑步,到中點(diǎn)后改為騎自行車(chē),最后兩人同時(shí)到達(dá)B地.已知甲騎自行車(chē)比乙騎自行車(chē)快.若每人離開(kāi)甲地的距離與所用時(shí)間
的函數(shù)用圖象表示,則甲、乙對(duì)應(yīng)的圖象分別是
A.甲是(1),乙是(2)B.甲是(1),乙是(4)
C.甲是(3),乙是(2)D.甲是(3),乙是(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】研究下列函數(shù)的定義域、值域、奇偶性和單調(diào)性,并作出其大致圖像.
(1);
(2);
(3);
(4).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求下列各題:
(1)已知求
的最大值;
(2)已知,求
的最小值;
(3)已知,求
的最大值;
(4)已知,求
的最小值;
(5)已知,求
的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com