【題目】設(shè)函數(shù) (k為常數(shù))
(1)當(dāng)時,求函數(shù)
的最值;
(2)若,討論函數(shù)
的單調(diào)性
【答案】(1)最小值為,無大值;(2)見解析
【解析】
(1)求出導(dǎo)函數(shù)得函數(shù)的單調(diào)性即可求得函數(shù)的最值;
(2)根據(jù)導(dǎo)函數(shù),對
進行分類討論即可得到原函數(shù)的單調(diào)性.
(1)當(dāng)時,
,
函數(shù)的定義域是
令,得
;令
,得
,
所以函數(shù)在區(qū)間
上單調(diào)遞減,在區(qū)間
上單調(diào)遞增
所以函數(shù)的最小值為
,無最大值.
(2)函數(shù)的定義域是
.
令,則
①當(dāng)時,
,方程
有兩不等根
,
,且
,則
的兩根為
,
令,得
;令
,得
或
所以函數(shù)在區(qū)間
上單調(diào)遞增,
在區(qū)間,
上單調(diào)遞減
②當(dāng)時,
,
,
,且不恒為0,所以函數(shù)
在區(qū)間
上單調(diào)遞減
③當(dāng)時,
,方程
有兩不等根
,
,且
,則
=0在
上的根為
.
令,得
;令
,得
,
所以函數(shù)在區(qū)間
上單調(diào)遞減,在區(qū)間
單調(diào)遞增.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3﹣ax﹣xlnx.其中a∈R.
(Ⅰ)若,證明:f(x)≥0;
(Ⅱ)若xe1﹣x≥1﹣f(x)在x∈(1,+∞)上恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某印刷廠為了研究印刷單冊書籍的成本(單位:元)與印刷冊數(shù)
(單位:千冊)之間的關(guān)系,在印制某種書籍時進行了統(tǒng)計,相關(guān)數(shù)據(jù)見下表.
印刷冊數(shù) | 2 | 3 | 4 | 5 | 8 |
單冊成本 | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到了兩個回歸方程,方程甲:,方程乙:
.
(1)為了評價兩種模型的擬合效果,完成以下任務(wù).
(i)完成下表(計算結(jié)果精確到0.1);
印刷冊數(shù) | 2 | 3 | 4 | 5 | 8 | |
單冊成本 | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估計值 | 2.4 | 2.1 | 1.6 | ||
殘差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估計值 | 2.3 | 2 | 1.9 | ||
殘差 | 0.1 | 0 | 0 |
(ii)分別計算模型甲與模型乙的殘差平方和和
,并通過比較
,
的大小,判斷哪個模型擬合效果更好.
(2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進行二次印刷.根據(jù)市場調(diào)查,新需求量為10千冊,若印刷廠以每冊5元的價格將書籍出售給訂貨商,試估計印刷廠二次印刷獲得的利潤.(按(1)中擬合效果較好的模型計算印刷單冊書的成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國在北宋1084年第一次印刷出版了《算經(jīng)十書》,即賈憲的《黃帝九章算法細草》,劉益的《議古根源》,秦九韶的《數(shù)書九章》,李冶的《測圓海鏡》和《益古演段》,楊輝的《詳解九章算法》、《日用算法》和《楊輝算法》,朱世杰的《算學(xué)啟蒙》和《四元玉鑒》.這些書中涉及的很多方面都達到古代數(shù)學(xué)的高峰,其中一些“算法”如開立方和開四次方也是當(dāng)時世界數(shù)學(xué)的高峰.某圖書館中正好有這十本書現(xiàn)在小明同學(xué)從這十本書中任借兩本閱讀,那么他取到的書的書名中有“算”字的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在四棱錐中,底面
為等腰梯形,
,
,
,
,點
在底面的投影
恰好為
與
的交點,
.
(1)證明:;
(2)若為
的中點,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面
平面
,在
中,
,
為
的中點,四邊形
是等腰梯形,
,
.
(Ⅰ)求異面直線與
所成角的正弦值;
(Ⅱ)求證:平面平面
;
(Ⅲ)求直線與平面
所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線
在點
處的切線方程為
.
(1)求函數(shù)的解析式,并證明:
.
(2)已知,且函數(shù)
與函數(shù)
的圖象交于
,
兩點,且線段
的中點為
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某游樂園的一個摩天輪半徑為10米,輪子的底部在地面上2米處,如果此摩天輪每20分鐘轉(zhuǎn)一圈,當(dāng)摩天輪上某人經(jīng)過處時開始計時(按逆時針方向轉(zhuǎn)),
(其中
平行于地面).
(1)求開始轉(zhuǎn)動5分鐘時此人相對于地面的高度.
(2)開始轉(zhuǎn)動分鐘時,摩天輪上此人經(jīng)過點
,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com