日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知如圖,拋物線y=ax2+bx+2與x軸的交點(diǎn)是A(3,0)、B(6,0),與y軸的交點(diǎn)是C.
          (1)求拋物線的函數(shù)表達(dá)式;
          (2)設(shè)P(x,y)(0<x<6)是拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)P作PQy軸交直線BC于點(diǎn)Q.
          ①當(dāng)x取何值時(shí),線段PQ的長(zhǎng)度取得最大值,其最大值是多少?
          ②是否存在這樣的點(diǎn)P,使∠OQA為直角?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
          (1)∵拋物線過(guò)A(3,0),B(6,0),
          9a+3b+2=0
          36a+6b+2=0
          ,
          解得:
          a=
          1
          9
          b=-1
          ,
          ∴所求拋物線的函數(shù)表達(dá)式是y=
          1
          9
          x2-x+2
          ;
          (2)①∵當(dāng)x=0時(shí),y=2,
          ∴點(diǎn)C的坐標(biāo)為(0,2),
          設(shè)直線BC的函數(shù)表達(dá)式是y=kx+b,
          則有
          6k+b=0
          b=2
          ,
          解得:
          k=-
          1
          3
          b=2

          ∴直線BC的函數(shù)表達(dá)式是y=-
          1
          3
          x+2
          ,
          ∵0<x<6,
          PQ=yQ-yP=(-
          1
          3
          x+2)-(
          1
          9
          x2-x+2)
          =-
          1
          9
          x2+
          2
          3
          x

          =-
          1
          9
          (x-3)2+1

          ∴當(dāng)x=3時(shí),線段PQ的長(zhǎng)度取得最大值,最大值是1;
          ②存在這樣的點(diǎn)P(
          3
          2
          ,
          3
          4
          )
          P(
          12
          5
          ,
          6
          25
          )
          ,使∠OQA為直角.
          事實(shí)上,
          當(dāng)∠OQA=90°時(shí),設(shè)PQ與x軸交于點(diǎn)D,
          ∵∠ODQ+∠ADQ=90°,∠QAD+∠AQD=90°,∴∠OQD=∠QAD,
          又∵∠ODQ=∠QDA=90°,∴△ODQ△QDA,
          DQ
          OD
          =
          DA
          DQ
          ,即DQ2=OD•DA.
          (-
          1
          3
          x+2)2=x(3-x)
          ,整理得:10x2-39x+36=0.
          x1=
          3
          2
          ,x2=
          12
          5

          y1=
          1
          9
          ×(
          3
          2
          )2-
          3
          2
          +2=
          3
          4
          y2=
          1
          9
          ×(
          12
          5
          )2-
          3
          2
          +2=
          6
          25

          P(
          3
          2
          ,
          3
          4
          )
          P(
          12
          5
          ,
          6
          25
          )

          ∴所求的點(diǎn)P的坐標(biāo)是P(
          3
          2
          ,
          3
          4
          )
          P(
          12
          5
          6
          25
          )
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,半圓的直徑的長(zhǎng)為4,點(diǎn)平分弧,過(guò)的垂線交,交
          (1)求證:
          (2)若的角平分線,求的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          若直線y=kx+2與曲線y=
          x2-1
          ,|x|>1
          1-x2
          ,|x|≤1
          恰有兩個(gè)不同的交點(diǎn),則k∈______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知雙曲線C1x2-
          y2
          4
          =1

          (1)求與雙曲線C1有相同焦點(diǎn),且過(guò)點(diǎn)P(4,
          3
          )的雙曲線C2的標(biāo)準(zhǔn)方程;
          (2)直線l:y=x+m分別交雙曲線C1的兩條漸近線于A、B兩點(diǎn).當(dāng)
          OA
          OB
          =3
          時(shí),求實(shí)數(shù)m的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          已知直線l與橢圓
          x2
          36
          +
          y2
          9
          =1
          交于A和B兩點(diǎn),點(diǎn)(4,2)是線段AB的中點(diǎn),則直線l的方程是______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖橢圓C的方程為
          y2
          a2
          +
          x2
          b2
          =1(a>b>0)
          ,A是橢圓C的短軸左頂點(diǎn),過(guò)A點(diǎn)作斜率為-1的直線交橢圓于B點(diǎn),點(diǎn)P(1,0),且BPy軸,△APB的面積為
          9
          2

          (1)求橢圓C的方程;
          (2)在直線AB上求一點(diǎn)M,使得以橢圓C的焦點(diǎn)為焦點(diǎn),且過(guò)M的雙曲線E的實(shí)軸最長(zhǎng),并求此雙曲線E的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,已知圓E:(x+
          3
          2+y2=16,點(diǎn)F(
          3
          ,0),P是圓E上任意一點(diǎn).線段PF的垂直平分線和半徑PE相交于Q.
          (Ⅰ)求動(dòng)點(diǎn)Q的軌跡Γ的方程;
          (Ⅱ)已知A,B,C是軌跡Γ的三個(gè)動(dòng)點(diǎn),A與B關(guān)于原點(diǎn)對(duì)稱,且|CA|=|CB|,問(wèn)△ABC的面積是否存在最小值?若存在,求出此時(shí)點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系xoy中,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)經(jīng)過(guò)點(diǎn)M(3
          2
          ,
          2
          ),橢圓的離心率e=
          2
          2
          3

          (1)求橢圓C的方程;
          (2)過(guò)點(diǎn)M作兩直線與橢圓C分別交于相異兩點(diǎn)A、B.若∠AMB的平分線與y軸平行,試探究直線AB的斜率是否為定值?若是,請(qǐng)給予證明;若不是,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          若點(diǎn)P(2,-1)平分橢圓
          x2
          12
          +
          y2
          8
          =1
          的一條弦,則該弦所在的直線方程為_(kāi)_____.(結(jié)果寫(xiě)成一般式)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案