日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】命題p:關(guān)于x的不等式x2+(a﹣1)x+a2<0的解集是空集,命題q:已知二次函數(shù)f(x)=x2﹣mx+2滿足 ,且當(dāng)x∈[0,a]時,最大值是2,若命題“p且q”為假,“p或q”為真,求實數(shù)a的取值范圍.

          【答案】解:對于命題p:∵關(guān)于x的不等式x2+(a﹣1)x+a2<0的解集是空集,
          ∴△=﹣3a2﹣2a+1≤0,解得 ,
          由已知得二次函數(shù)f(x)=x2﹣mx+2的對稱軸為 ,
          ,∴m=3,f(x)=x2﹣3x+2,
          當(dāng)x∈[0,a]時,最大值是2,由對稱性知q:0<a≤3.
          由命題“p且q”為假,“p或q”為真,可知:p,q恰一真一假.
          當(dāng)p真q假時, ,∴a≤﹣1或a>3,
          當(dāng)p假q真時, ,∴
          綜上可得,
          【解析】對于命題p:由關(guān)于x的不等式x2+(a﹣1)x+a2<0的解集是空集,可得△≤0,解得p的取值范圍.由已知得二次函數(shù)f(x)=x2﹣mx+2的對稱軸為 ,可得m,可得f(x)=x2﹣3x+2,當(dāng)x∈[0,a]時,最大值是2,由對稱性知a的取值范圍.由命題“p且q”為假,“p或q”為真,可知:p,q恰一真一假.
          【考點精析】認(rèn)真審題,首先需要了解復(fù)合命題的真假(“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時為真,其他情況時為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時為假,其他情況時為真).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,橢圓C: (ab>0)的離心率為,其左焦點到點的距離為.不過原點O的直線與C相交于AB兩點,且線段AB被直線OP平分.

          (1)求橢圓C的方程;

          (2)求ABP的面積取最大時直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某投資公司現(xiàn)提供兩種一年期投資理財方案,一年后投資盈虧的情況如下表:

          投資股市

          獲利

          不賠不賺

          虧損

          購買基金

          獲利

          不賠不賺

          虧損

          概率

          概率

          (Ⅰ)甲、乙兩人在投資顧問的建議下分別選擇“投資股市”和“買基金”,若一年后他們中至少有一人盈利的概率大于,求的取值范圍;

          (Ⅱ)若,某人現(xiàn)有萬元資金,決定在“投資股市”和“購買基金”這兩種方案中選擇出一種,那么選擇何種方案可使得一年后的投資收益的數(shù)學(xué)期望值較大.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義在R上的函數(shù)f(﹣x)+f(x)=0,f(x+4)=f(x)滿足,且x∈(﹣2,0)時,f(x)=2x+ ,則f(log220)=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中, 已知定圓,動圓過點且與圓相切,記動圓圓心的軌跡為曲線.

          (1)求曲線的方程;

          (2)設(shè)是曲線上兩點,點關(guān)于軸的對稱點為 (異于點),若直線分別交軸于點,證明: 為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=的值域是[0,+∞),則實數(shù)m的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,臺風(fēng)中心從A地以每小時20千米的速度向東北方向(北偏東)移動,離臺風(fēng)中心不超過300千米的地區(qū)為危險區(qū)域.城市B在A地的正東400千米處.請建立恰當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,解決以下問題:

          (1) 求臺風(fēng)移動路徑所在的直線方程;

          (2)求城市B處于危險區(qū)域的時間是多少小時?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),

          (Ⅰ)當(dāng)時,求的最大值;

          (Ⅱ)若對恒成立,求的取值范圍;

          (Ⅲ)證明

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:sinθ=ρcos2θ,過點M(﹣1,2)的直線l: (t為參數(shù))與曲線C相交于A、B兩點.求:
          (1)線段AB的長度;
          (2)點M(﹣1,2)到A、B兩點的距離之積.

          查看答案和解析>>

          同步練習(xí)冊答案