設(shè)橢圓C:
過點(diǎn)
, 且離心率
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過右焦點(diǎn)的動(dòng)直線交橢圓于點(diǎn)
,設(shè)橢圓的左頂點(diǎn)為
連接
且交動(dòng)直線
于
,若以MN為直徑的圓恒過右焦點(diǎn)F,求
的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓過點(diǎn)
,且它的離心率
.直線
與橢圓
交于
、
兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)時(shí),求證:
、
兩點(diǎn)的橫坐標(biāo)的平方和為定值;
(Ⅲ)若直線與圓
相切,橢圓上一點(diǎn)
滿足
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線的右頂點(diǎn)為A,右焦點(diǎn)為F,右準(zhǔn)線與
軸交于點(diǎn)B,且與一條漸近線交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),
,
,過點(diǎn)F的直線
與雙曲線右支交于點(diǎn)
.
(Ⅰ)求此雙曲線的方程;
(Ⅱ)求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)點(diǎn)P是曲線C:上的動(dòng)點(diǎn),點(diǎn)P到點(diǎn)(0,1)的距離和它到
焦點(diǎn)F的距離之和的最小值為
(1)求曲線C的方程
(2)若點(diǎn)P的橫坐標(biāo)為1,過P作斜率為的直線交C與另一點(diǎn)Q,交x軸于點(diǎn)M,
過點(diǎn)Q且與PQ垂直的直線與C交于另一點(diǎn)N,問是否存在實(shí)數(shù)k,使得直線MN與曲線C
相切?若存在,求出k的值,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系xOy中,橢圓C1: ="1" (a>b>0)的左、右焦點(diǎn)分別為F1、F2, F2也是拋物線C2:y2=4x的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=
.
(1)求C1的方程;
(2)直線l∥OM,與C1交于A、B兩點(diǎn),若·
=0,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線實(shí)軸在軸,且實(shí)軸長為2,離心率
, L是過定點(diǎn)
的直線.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)判斷L能否與雙曲線交于,
兩點(diǎn),且線段
恰好以點(diǎn)
為中點(diǎn),若存在,求出直線L的方程,若不存,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)已知橢圓:
(
)過點(diǎn)
,其左、右焦點(diǎn)分別為
,且
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若是直線
上的兩個(gè)動(dòng)點(diǎn),且
,則以
為直徑的圓
是否過定點(diǎn)?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是
,直線
的參數(shù)方程是
(
為參數(shù))。
求極點(diǎn)在直線上的射影點(diǎn)
的極坐標(biāo);
若、
分別為曲線
、直線
上的動(dòng)點(diǎn),求
的最小值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com