日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知數(shù)列{an}的前n項和 ,數(shù)列{bn}的前n項和為Bn
          (1)求數(shù)列{an}的通項公式;
          (2)設 ,求數(shù)列{cn}的前n項和Cn
          (3)證明:

          【答案】
          (1)解:當n≥2時, ,

          兩式相減:an=An﹣An1=2n﹣1;

          當n=1時,a1=A1=1,也適合an=2n﹣1,

          故數(shù)列{an}的通項公式為an=2n﹣1


          (2)解:由題意知: ,Cn=c1+c2+…+cn

          , ,

          兩式相減可得:

          ,


          (3)解: ,顯然 ,

          即bn>2,Bn=b1+b2+…+bn>2n

          另一方面, ,

          , ,

          即:2n<Bn<2n+2


          【解析】(1)當n≥2時,利用an=An﹣An1可得an=2n﹣1,再驗證n=1的情況,即可求得數(shù)列{an}的通項公式;(2)由題意知: ,利用錯位相減法即可求得數(shù)列{cn}的前n項和Cn;(3)利用基本不等式可得 ,可得Bn=b1+b2+…+bn>2n;再由bn= ,累加可 , 于是可證明:
          【考點精析】關于本題考查的數(shù)列的通項公式,需要了解如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能得出正確答案.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知數(shù)列{an},{bn}滿足2Sn=(an+2)bn , 其中Sn是數(shù)列{an}的前n項和.
          (1)若數(shù)列{an}是首項為 ,公比為﹣ 的等比數(shù)列,求數(shù)列{bn}的通項公式;
          (2)若bn=n,a2=3,求證:數(shù)列{an}滿足an+an+2=2an+1 , 并寫出數(shù)列{an}的通項公式;
          (3)在(2)的條件下,設cn= , 求證:數(shù)列{cn}中的任意一項總可以表示成該數(shù)列其他兩項之積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知數(shù)列{an},a1=a(a∈R),an+1= (n∈N*).
          (1)若數(shù)列{an}從第二項起每一項都大于1,求實數(shù)a的取值范圍;
          (2)若a=﹣3,記Sn是數(shù)列{an}的前n項和,證明:Sn<n+

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=2cos( ﹣x)cos(x+ )+ . (Ⅰ)求函數(shù)f(x)的最小正周期和單調遞減區(qū)間;
          (Ⅱ)求函數(shù)f(x)在區(qū)間[0, ]上的值域.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在△ABC中,D在AB上,AD:DB=1:2,E為AC中點,CD、BE相交于點P,連結AP.設 =x +y (x,y∈R),則x,y的值分別為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知f(x)= ,若函數(shù)f(x)有四個零點,則實數(shù)a的取值范圍是(
          A.(﹣∞,﹣e)
          B.(﹣∞,﹣
          C.(﹣∞,﹣
          D.(﹣∞,﹣

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)= ﹣axlnx(a∈R)在x=1處的切線方程為y=bx+1+ (b∈R).
          (1)求a,b的值;
          (2)證明:f(x)<
          (3)若正實數(shù)m,n滿足mn=1,證明: + <2(m+n).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在一次購物抽獎活動中,假設某10張券中有一等獎券1張,可獲價值50元的獎品;有二等獎券3張,每張可獲價值10元的獎品;其余6張沒有獎,某顧客從此10張券中任抽2張,求:
          (Ⅰ)該顧客中獎的概率;
          (Ⅱ)該顧客獲得的獎品總價值ξ(元)的概率分布列和期望Eξ.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=cos(2x﹣ )+2cos2x,將函數(shù)y=f(x)的圖象向右平移 個單位,得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)圖象的一個對稱中心是(
          A.(﹣ ,1)
          B.(﹣ ,1)
          C.( ,1)
          D.( ,0)

          查看答案和解析>>

          同步練習冊答案