【題目】已知橢圓離心率為
,以原點為圓心,以橢圓C的短半軸長為半徑的圓O與直線
:
相切.
(1)求橢圓C的方程;
(2)設(shè)不過原點O的直線與該橢圓交于P、Q兩點,滿足直線OP,PQ,OQ的斜率依次成等比數(shù)列,求△OPQ面積的取值范圍.
【答案】(1);(2)(0,1).
【解析】
(1)根據(jù)直線與圓相切的條件和橢圓的離心率可求得a,b,可得出橢圓的標準方程;
(2)設(shè)出直線的方程y=kx+m(m≠0),將直線的方程與橢圓的方程聯(lián)立得出交點P,Q的坐標間的關(guān)系,再由直線OP,PQ,OQ的斜率依次成等比數(shù)列,得出0<m2<2且m2≠1,表示出△OPQ的面積可求得△OPQ面積的取值范圍.
(1)由直線:
與圓
相切得:
,由
得
,
又,
,
,
所以橢圓C的方程為;
(2)由題意可知,直線的斜率存在且不為0,故可設(shè)直線l的方程為y=kx+m(m≠0),P(x1,y1),Q(x2,y2),
由消去y得(1+4k2)x2+8kmx+4(m2-1)=0,
則Δ=64k2m2-16(1+4k2)(m2-1)=16(4k2-m2+1)>0,且x1+x2=,x1x2=
.
故y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2.
因為直線OP,PQ,OQ的斜率依次成等比數(shù)列,所以·
=
=k2,
即+m2=0,又m≠0,所以k2=
,即k=±
.
由Δ>0,及直線OP,OQ的斜率存在,得0<m2<2且m2≠1.
S△OPQ=|x1-x2||m|=
,
所以S△OPQ的取值范圍為(0,1).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中國詩詞大會》(第三季)亮點頗多,在“人生自有詩意”的主題下,十場比賽每場都有一首特別設(shè)計的開場詩詞在聲光舞美的配合下,百人團齊聲朗誦,別有韻味.若《沁園春·長沙》、《蜀道難》、《敕勒歌》、《游子吟》、《關(guān)山月》、《清平樂·六盤山》排在后六場,且《蜀道難》排在《游子吟》的前面,《沁園春·長沙》與《清平樂·六盤山》不相鄰且均不排在最后,則后六場的排法有__________種.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的左焦點為
,且點
在C上.
求C的方程;
設(shè)點P關(guān)于x軸的對稱點為點
不經(jīng)過P點且斜率為
的直線1與C交于A,B兩點,直線PA,PB分別與x軸交于點M,N,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4 坐標系與參數(shù)方程選講
在直角坐標系中,直線
的參數(shù)方程
(
為參數(shù)),以坐標原點為極點,
軸的非負半軸為極軸,建立極坐標系,曲線
極坐標方程為
.
(1)求直線的普通方程以及曲線
的參數(shù)方程;
(2)當時,
為曲線
上動點,求點
到直線
距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圖形ABCDEF,內(nèi)部連有線段.
(1)由點A沿著圖中的線段到達點E的最近路線有多少條?
(2)由點A沿著圖中的線段到達點C的最近路線有多少條?
(3)求出圖中總計有多少個矩形?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知直線與曲線
相切于兩點,則對于函數(shù)
,以下結(jié)論成立的是( )
A.有3個極大值點,2個極小值點B.有2個零點
C.有2個極大值點,沒有極小值點D.沒有零點
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象關(guān)于原點對稱,其中
為常數(shù).
(1)求的值;
(2)當時,
恒成立,求實數(shù)
的取值范圍;
(3)若關(guān)于的方程
在
上有解,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個班級進行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績,得到如下所示的列聯(lián)表:
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 10 | ||
乙班 | 30 | ||
總計 |
已知在全部105人中隨機抽取1人,成績優(yōu)秀的概率為,則下列說法正確的是( )
A. 列聯(lián)表中的值為30,
的值為35
B. 列聯(lián)表中的值為15,
的值為50
C. 根據(jù)列聯(lián)表中的數(shù)據(jù),若按的可靠性要求,能認為“成績與班級有關(guān)系”
D. 根據(jù)列聯(lián)表中的數(shù)據(jù),若按的可靠性要求,不能認為“成績與班級有關(guān)系”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】獨立性檢驗中,假設(shè):運動員受傷與不做熱身運動沒有關(guān)系.在上述假設(shè)成立的情況下,計算得
的觀測值
.下列結(jié)論正確的是
A. 在犯錯誤的概率不超過0.01的前提下,認為運動員受傷與不做熱身運動有關(guān)
B. 在犯錯誤的概率不超過0.01的前提下,認為運動員受傷與不做熱身運動無關(guān)
C. 在犯錯誤的概率不超過0.005的前提下,認為運動員受傷與不做熱身運動有關(guān)
D. 在犯錯誤的概率不超過0.005的前提下,認為運動員受傷與不做熱身運動無關(guān)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com