【題目】解答題
(1)求函數(shù)y=2|x﹣1|﹣|x﹣4|的值域;
(2)若不等式2|x﹣1|﹣|x﹣a|≥﹣1在x∈R上恒成立,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:∵y=2|x﹣1|﹣|x﹣4|= =
,
故函數(shù)的值域是[﹣3,+∞)
(2)解:f(x)=2|x﹣1|﹣|x﹣a|,
①a≥1時(shí),f(x)= =
,
而2a﹣2>1﹣a,
此時(shí)f(x)的最小值是1﹣a,故只需1﹣a≥﹣1,
∴1≤a≤2;
②a<1時(shí),f(x)= =
,
此時(shí)a<1時(shí),﹣1+a<2﹣2a,f(x)的最小值是a﹣1,
只需a﹣1≥﹣1,0≤a<1,
綜上,a的范圍是[0,2]
【解析】(1)通過(guò)討論x的范圍求出函數(shù)f(x)的分段函數(shù)的形式,從而求出f(x)的值域即可;(2)通過(guò)討論a的范圍,求出函數(shù)f(x)的分段函數(shù)的形式,求出f(x)的最小值,得到關(guān)于a的不等式,解出即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用絕對(duì)值不等式的解法的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某程序框圖如圖所示,其中t∈Z,該程序運(yùn)行后輸出的k=2,則t的最大值為( )
A.11
B.2057
C.2058
D.2059
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的方程為y=3+ .
(1)寫出曲線C的一個(gè)參數(shù)方程;
(2)在曲線C上取一點(diǎn)P,過(guò)點(diǎn)P作x軸,y軸的垂線,垂足分別為A,B,求矩形OAPB的周長(zhǎng)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,∠BCC1= ,AB=BB1=2,BC=1,D為CC1中點(diǎn).
(1)求證:DB1⊥平面ABD;
(2)求二面角A﹣B1D﹣A1的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知拋物線,過(guò)點(diǎn)
任作一直線與
相交于
兩點(diǎn),過(guò)點(diǎn)
作
軸的平行線與直線
相交于點(diǎn)
為坐標(biāo)原點(diǎn)).
(1)證明: 動(dòng)點(diǎn)在定直線上;
(2)作的任意一條切線
(不含
軸), 與直線
相交于點(diǎn)
與(1)中的定直線相交于點(diǎn)
.
證明: 為定值, 并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}為等差數(shù)列,公差為d,且0<d<1,a5≠ (k∈Z),sin2a3+2sina5cosa5=sin2a7 , 函數(shù)f(x)=dsin(wx+4d)(w>0)滿足:在
上單調(diào)且存在
,則w范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線 :
(
)的焦點(diǎn)為
,點(diǎn)
在拋物線
上,且
,直線
與拋物線
交于
,
兩點(diǎn),
為坐標(biāo)原點(diǎn).
(1)求拋物線 的方程;
(2)求 的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}中,a1=2, (n∈N*).
(1)證明數(shù)列 是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè) ,若數(shù)列{bn}的前n項(xiàng)和是Tn , 求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某玩具生產(chǎn)公司每天計(jì)劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共個(gè),生產(chǎn)一個(gè)衛(wèi)兵需
分鐘,生產(chǎn)一個(gè)騎兵需
分鐘,生產(chǎn)一個(gè)傘兵需
分鐘,已知總生產(chǎn)時(shí)間不超過(guò)
小時(shí),若生產(chǎn)一個(gè)衛(wèi)兵可獲利潤(rùn)
元,生產(chǎn)一個(gè)騎兵可獲利潤(rùn)
元,生產(chǎn)一個(gè)傘兵可獲利潤(rùn)
元.
(1)用每天生產(chǎn)的衛(wèi)兵個(gè)數(shù)與騎兵個(gè)數(shù)
表示每天的利潤(rùn)
(元);
(2)怎么分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com